Reputation: 63
I have to write a program to solve quadratics, returning a complex number result.
I've gotten so far, with defining a complex number, declaring it to be part of num, so +,- and * - ing can take place.
I've also defined a data type for a quadratic equation, but im now stuck with the actual solving of the quadratic. My math is quite poor, so any help would be greatly appreciated...
data Complex = C {
re :: Float,
im :: Float
} deriving Eq
-- Display complex numbers in the normal way
instance Show Complex where
show (C r i)
| i == 0 = show r
| r == 0 = show i++"i"
| r < 0 && i < 0 = show r ++ " - "++ show (C 0 (i*(-1)))
| r < 0 && i > 0 = show r ++ " + "++ show (C 0 i)
| r > 0 && i < 0 = show r ++ " - "++ show (C 0 (i*(-1)))
| r > 0 && i > 0 = show r ++ " + "++ show (C 0 i)
-- Define algebraic operations on complex numbers
instance Num Complex where
fromInteger n = C (fromInteger n) 0 -- tech reasons
(C a b) + (C x y) = C (a+x) (b+y)
(C a b) * (C x y) = C (a*x - b*y) (b*x + b*y)
negate (C a b) = C (-a) (-b)
instance Fractional Complex where
fromRational r = C (fromRational r) 0 -- tech reasons
recip (C a b) = C (a/((a^2)+(b^2))) (b/((a^2)+(b^2)))
root :: Complex -> Complex
root (C x y)
| y == 0 && x == 0 = C 0 0
| y == 0 && x > 0 = C (sqrt ( ( x + sqrt ( (x^2) + 0 ) ) / 2 ) ) 0
| otherwise = C (sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ((y/(2*(sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ) ) )
-- quadratic polynomial : a.x^2 + b.x + c
data Quad = Q {
aCoeff, bCoeff, cCoeff :: Complex
} deriving Eq
instance Show Quad where
show (Q a b c) = show a ++ "x^2 + " ++ show b ++ "x + " ++ show c
solve :: Quad -> (Complex, Complex)
solve (Q a b c) = STUCK!
EDIT: I seem to have missed out the whole point of using my own complex number datatype is to learn about custom datatypes. I'm well aware that i could use complex.data. Any help that could be given using my solution so far would be greatly appreciated.\
EDIT 2: It seems that my initial question was worded horribly. I'm aware that the quadratic formula will return both (or just the one) root to me. Where I am having trouble is returning these roots as a (complex, complex) tuple with the code above.
I'm well aware that I could use the built in quadratic functions as have been displayed below, but this is not the exercise. The idea behind the exercise, and creating ones own complex number data type, is to learn about custom data types.
Upvotes: 3
Views: 3469
Reputation: 89093
Like newacct said, it's just the quadratic equation:
(-b +- sqrt(b^2 - 4ac)) / 2a
module QuadraticSolver where
import Data.Complex
data Quadratic a = Quadratic a a a deriving (Show, Eq)
roots :: (RealFloat a) => Quadratic a -> [ Complex a ]
roots (Quadratic a b c) =
if discriminant == 0
then [ numer / denom ]
else [ (numer + root_discriminant) / denom,
(numer - root_discriminant) / denom ]
where discriminant = (b*b - 4*a*c)
root_discriminant = if (discriminant < 0)
then 0 :+ (sqrt $ -discriminant)
else (sqrt discriminant) :+ 0
denom = 2*a :+ 0
numer = (negate b) :+ 0
in practice:
ghci> :l QuadraticSolver
Ok, modules loaded: QuadraticSolver.
ghci> roots (Quadratic 1 2 1)
[(-1.0) :+ 0.0]
ghci> roots (Quadratic 1 0 1)
[0.0 :+ 1.0,(-0.0) :+ (-1.0)]
And adapting to use your terms:
solve :: Quad -> (Complex, Complex)
solve (Q a b c) = ( sol (+), sol (-) )
where sol op = (op (negate b) $ root $ b*b - 4*a*c) / (2 * a)
Although I haven't tested that code
Upvotes: 6
Reputation: 229673
Since Haskell's sqrt
can also handle complex numbers, rampion's solution can even be further simplified:
import Data.Complex
-- roots for quadratic equations with complex coefficients
croots :: (RealFloat a) =>
(Complex a) -> (Complex a) -> (Complex a) -> [Complex a]
croots a b c
| disc == 0 = [solution (+)]
| otherwise = [solution (+), solution (-)]
where disc = b*b - 4*a*c
solution plmi = plmi (-b) (sqrt disc) / (2*a)
-- roots for quadratic equations with real coefficients
roots :: (RealFloat a) => a -> a -> a -> [Complex a]
roots a b c = croots (a :+ 0) (b :+ 0) (c :+ 0)
You can also use this croots
function with your own datatype, if you change the types to fit your implementation (and call your root
function instead of sqrt
).
Upvotes: 5