Reputation: 34800
I'm using an API client that is completely asynchrounous, that is, each operation either returns Task
or Task<T>
, e.g:
static async Task DoSomething(int siteId, int postId, IBlogClient client)
{
await client.DeletePost(siteId, postId); // call API client
Console.WriteLine("Deleted post {0}.", siteId);
}
Using the C# 5 async/await operators, what is the correct/most efficient way to start multiple tasks and wait for them all to complete:
int[] ids = new[] { 1, 2, 3, 4, 5 };
Parallel.ForEach(ids, i => DoSomething(1, i, blogClient).Wait());
or:
int[] ids = new[] { 1, 2, 3, 4, 5 };
Task.WaitAll(ids.Select(i => DoSomething(1, i, blogClient)).ToArray());
Since the API client is using HttpClient internally, I would expect this to issue 5 HTTP requests immediately, writing to the console as each one completes.
Upvotes: 541
Views: 434260
Reputation: 58444
int[] ids = new[] { 1, 2, 3, 4, 5 };
Parallel.ForEach(ids, i => DoSomething(1, i, blogClient).Wait());
Although you run the operations in parallel with the above code, this code blocks each thread that each operation runs on. For example, if the network call takes 2 seconds, each thread hangs for 2 seconds w/o doing anything but waiting.
int[] ids = new[] { 1, 2, 3, 4, 5 };
Task.WaitAll(ids.Select(i => DoSomething(1, i, blogClient)).ToArray());
On the other hand, the above code with WaitAll
also blocks the current thread and your thread won't be free to process any other work till the operation ends.
I would prefer WhenAll
which will perform your operations asynchronously in Parallel.
public async Task DoWork() {
int[] ids = new[] { 1, 2, 3, 4, 5 };
await Task.WhenAll(ids.Select(i => DoSomething(1, i, blogClient)));
}
In fact, in the above case, you don't even need to
await
, you can just directly return from the method as you don't have any continuations:
public Task DoWork() { int[] ids = new[] { 1, 2, 3, 4, 5 }; return Task.WhenAll(ids.Select(i => DoSomething(1, i, blogClient))); }
To back this up, here is a detailed blog post going through all the alternatives and their advantages/disadvantages: How and Where Concurrent Asynchronous I/O with ASP.NET Web API
Upvotes: 730
Reputation: 427
The question is 10 years old and OP was asking about C# 5.
As of today, there is one more option: Parallel.ForEachAsync
method that was introduced in .NET 6.
Here is an example based on the OP's code:
int[] ids = new[] { 1, 2, 3, 4, 5 };
await Parallel.ForEachAsync(ids, async (i,token)
=> await DoSomething(1, i, blogClient));
This is completely asynchronous and doesn't block any threads.
Additionally, it might be better
Task.WaitAll
Task.WhenAll
approaches because they don't limit the number of threads running in parallel. So if you have a huge array it can eat up all your RAM. Parallel.ForEachAsync
allows you to specify parallelism degree like so:
var options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
await Parallel.ForEachAsync(ids, options, async (i,token)
=> await DoSomething(1, i, blogClient));
This way you have only 4 threads running in parallel.
Upvotes: 11
Reputation: 361
You can use the Task.WhenAll
function, to which you can pass any number of tasks. The Task.WhenAll
returns a new task that will complete when all the tasks have completed. Be sure to wait asynchronously on Task.WhenAll
, to avoid blocking your UI thread:
public async Task DoSomethingAsync() {
Task[] tasks = new Task[numTasks];
for (int i = 0; i < numTasks; i++)
{
tasks[i] = DoChildTaskAsync();
}
await Task.WhenAll(tasks);
// Code here will execute on UI thread
}
Upvotes: 33
Reputation: 1945
All the answers are for running the same function.
The following code works for calling different functions. Just put your regular Task.Run()
inside an array and call with Task.WhenAll()
:
await Task.WhenAll(new Task[] {
Task.Run(() => Func1(args)),
Task.Run(() => Func2(args))
});
Upvotes: 5
Reputation: 5519
I just want to add to all great answers above,
that if you write a library it's a good practice to use ConfigureAwait(false)
and get better performance, as said here.
So this snippet seems to be better:
public static async Task DoWork()
{
int[] ids = new[] { 1, 2, 3, 4, 5 };
await Task.WhenAll(ids.Select(i => DoSomething(1, i))).ConfigureAwait(false);
}
A full fiddle link here.
Upvotes: 1
Reputation: 551
Parallel.ForEach
requires a list of user-defined workers and a non-async Action
to perform with each worker.
Task.WaitAll
and Task.WhenAll
require a List<Task>
, which are by definition asynchronous.
I found RiaanDP's response very useful to understand the difference, but it needs a correction for Parallel.ForEach
. Not enough reputation to respond to his comment, thus my own response.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
namespace AsyncTest
{
class Program
{
class Worker
{
public int Id;
public int SleepTimeout;
public void DoWork(DateTime testStart)
{
var workerStart = DateTime.Now;
Console.WriteLine("Worker {0} started on thread {1}, beginning {2} seconds after test start.",
Id, Thread.CurrentThread.ManagedThreadId, (workerStart - testStart).TotalSeconds.ToString("F2"));
Thread.Sleep(SleepTimeout);
var workerEnd = DateTime.Now;
Console.WriteLine("Worker {0} stopped; the worker took {1} seconds, and it finished {2} seconds after the test start.",
Id, (workerEnd - workerStart).TotalSeconds.ToString("F2"), (workerEnd - testStart).TotalSeconds.ToString("F2"));
}
public async Task DoWorkAsync(DateTime testStart)
{
var workerStart = DateTime.Now;
Console.WriteLine("Worker {0} started on thread {1}, beginning {2} seconds after test start.",
Id, Thread.CurrentThread.ManagedThreadId, (workerStart - testStart).TotalSeconds.ToString("F2"));
await Task.Run(() => Thread.Sleep(SleepTimeout));
var workerEnd = DateTime.Now;
Console.WriteLine("Worker {0} stopped; the worker took {1} seconds, and it finished {2} seconds after the test start.",
Id, (workerEnd - workerStart).TotalSeconds.ToString("F2"), (workerEnd - testStart).TotalSeconds.ToString("F2"));
}
}
static void Main(string[] args)
{
var workers = new List<Worker>
{
new Worker { Id = 1, SleepTimeout = 1000 },
new Worker { Id = 2, SleepTimeout = 2000 },
new Worker { Id = 3, SleepTimeout = 3000 },
new Worker { Id = 4, SleepTimeout = 4000 },
new Worker { Id = 5, SleepTimeout = 5000 },
};
var startTime = DateTime.Now;
Console.WriteLine("Starting test: Parallel.ForEach...");
PerformTest_ParallelForEach(workers, startTime);
var endTime = DateTime.Now;
Console.WriteLine("Test finished after {0} seconds.\n",
(endTime - startTime).TotalSeconds.ToString("F2"));
startTime = DateTime.Now;
Console.WriteLine("Starting test: Task.WaitAll...");
PerformTest_TaskWaitAll(workers, startTime);
endTime = DateTime.Now;
Console.WriteLine("Test finished after {0} seconds.\n",
(endTime - startTime).TotalSeconds.ToString("F2"));
startTime = DateTime.Now;
Console.WriteLine("Starting test: Task.WhenAll...");
var task = PerformTest_TaskWhenAll(workers, startTime);
task.Wait();
endTime = DateTime.Now;
Console.WriteLine("Test finished after {0} seconds.\n",
(endTime - startTime).TotalSeconds.ToString("F2"));
Console.ReadKey();
}
static void PerformTest_ParallelForEach(List<Worker> workers, DateTime testStart)
{
Parallel.ForEach(workers, worker => worker.DoWork(testStart));
}
static void PerformTest_TaskWaitAll(List<Worker> workers, DateTime testStart)
{
Task.WaitAll(workers.Select(worker => worker.DoWorkAsync(testStart)).ToArray());
}
static Task PerformTest_TaskWhenAll(List<Worker> workers, DateTime testStart)
{
return Task.WhenAll(workers.Select(worker => worker.DoWorkAsync(testStart)));
}
}
}
The resulting output is below. Execution times are comparable. I ran this test while my computer was doing the weekly anti virus scan. Changing the order of the tests did change the execution times on them.
Starting test: Parallel.ForEach...
Worker 1 started on thread 9, beginning 0.02 seconds after test start.
Worker 2 started on thread 10, beginning 0.02 seconds after test start.
Worker 3 started on thread 11, beginning 0.02 seconds after test start.
Worker 4 started on thread 13, beginning 0.03 seconds after test start.
Worker 5 started on thread 14, beginning 0.03 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.02 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.02 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.03 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.03 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.03 seconds after the test start.
Test finished after 5.03 seconds.
Starting test: Task.WaitAll...
Worker 1 started on thread 9, beginning 0.00 seconds after test start.
Worker 2 started on thread 9, beginning 0.00 seconds after test start.
Worker 3 started on thread 9, beginning 0.00 seconds after test start.
Worker 4 started on thread 9, beginning 0.00 seconds after test start.
Worker 5 started on thread 9, beginning 0.01 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.01 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.01 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.01 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.01 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.01 seconds after the test start.
Test finished after 5.01 seconds.
Starting test: Task.WhenAll...
Worker 1 started on thread 9, beginning 0.00 seconds after test start.
Worker 2 started on thread 9, beginning 0.00 seconds after test start.
Worker 3 started on thread 9, beginning 0.00 seconds after test start.
Worker 4 started on thread 9, beginning 0.00 seconds after test start.
Worker 5 started on thread 9, beginning 0.00 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.00 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.00 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.00 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.00 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.01 seconds after the test start.
Test finished after 5.01 seconds.
Upvotes: 13
Reputation: 1212
I was curious to see the results of the methods provided in the question as well as the accepted answer, so I put it to the test.
Here's the code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
namespace AsyncTest
{
class Program
{
class Worker
{
public int Id;
public int SleepTimeout;
public async Task DoWork(DateTime testStart)
{
var workerStart = DateTime.Now;
Console.WriteLine("Worker {0} started on thread {1}, beginning {2} seconds after test start.",
Id, Thread.CurrentThread.ManagedThreadId, (workerStart-testStart).TotalSeconds.ToString("F2"));
await Task.Run(() => Thread.Sleep(SleepTimeout));
var workerEnd = DateTime.Now;
Console.WriteLine("Worker {0} stopped; the worker took {1} seconds, and it finished {2} seconds after the test start.",
Id, (workerEnd-workerStart).TotalSeconds.ToString("F2"), (workerEnd-testStart).TotalSeconds.ToString("F2"));
}
}
static void Main(string[] args)
{
var workers = new List<Worker>
{
new Worker { Id = 1, SleepTimeout = 1000 },
new Worker { Id = 2, SleepTimeout = 2000 },
new Worker { Id = 3, SleepTimeout = 3000 },
new Worker { Id = 4, SleepTimeout = 4000 },
new Worker { Id = 5, SleepTimeout = 5000 },
};
var startTime = DateTime.Now;
Console.WriteLine("Starting test: Parallel.ForEach...");
PerformTest_ParallelForEach(workers, startTime);
var endTime = DateTime.Now;
Console.WriteLine("Test finished after {0} seconds.\n",
(endTime - startTime).TotalSeconds.ToString("F2"));
startTime = DateTime.Now;
Console.WriteLine("Starting test: Task.WaitAll...");
PerformTest_TaskWaitAll(workers, startTime);
endTime = DateTime.Now;
Console.WriteLine("Test finished after {0} seconds.\n",
(endTime - startTime).TotalSeconds.ToString("F2"));
startTime = DateTime.Now;
Console.WriteLine("Starting test: Task.WhenAll...");
var task = PerformTest_TaskWhenAll(workers, startTime);
task.Wait();
endTime = DateTime.Now;
Console.WriteLine("Test finished after {0} seconds.\n",
(endTime - startTime).TotalSeconds.ToString("F2"));
Console.ReadKey();
}
static void PerformTest_ParallelForEach(List<Worker> workers, DateTime testStart)
{
Parallel.ForEach(workers, worker => worker.DoWork(testStart).Wait());
}
static void PerformTest_TaskWaitAll(List<Worker> workers, DateTime testStart)
{
Task.WaitAll(workers.Select(worker => worker.DoWork(testStart)).ToArray());
}
static Task PerformTest_TaskWhenAll(List<Worker> workers, DateTime testStart)
{
return Task.WhenAll(workers.Select(worker => worker.DoWork(testStart)));
}
}
}
And the resulting output:
Starting test: Parallel.ForEach...
Worker 1 started on thread 1, beginning 0.21 seconds after test start.
Worker 4 started on thread 5, beginning 0.21 seconds after test start.
Worker 2 started on thread 3, beginning 0.21 seconds after test start.
Worker 5 started on thread 6, beginning 0.21 seconds after test start.
Worker 3 started on thread 4, beginning 0.21 seconds after test start.
Worker 1 stopped; the worker took 1.90 seconds, and it finished 2.11 seconds after the test start.
Worker 2 stopped; the worker took 3.89 seconds, and it finished 4.10 seconds after the test start.
Worker 3 stopped; the worker took 5.89 seconds, and it finished 6.10 seconds after the test start.
Worker 4 stopped; the worker took 5.90 seconds, and it finished 6.11 seconds after the test start.
Worker 5 stopped; the worker took 8.89 seconds, and it finished 9.10 seconds after the test start.
Test finished after 9.10 seconds.
Starting test: Task.WaitAll...
Worker 1 started on thread 1, beginning 0.01 seconds after test start.
Worker 2 started on thread 1, beginning 0.01 seconds after test start.
Worker 3 started on thread 1, beginning 0.01 seconds after test start.
Worker 4 started on thread 1, beginning 0.01 seconds after test start.
Worker 5 started on thread 1, beginning 0.01 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.01 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.01 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.01 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.01 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.01 seconds after the test start.
Test finished after 5.01 seconds.
Starting test: Task.WhenAll...
Worker 1 started on thread 1, beginning 0.00 seconds after test start.
Worker 2 started on thread 1, beginning 0.00 seconds after test start.
Worker 3 started on thread 1, beginning 0.00 seconds after test start.
Worker 4 started on thread 1, beginning 0.00 seconds after test start.
Worker 5 started on thread 1, beginning 0.00 seconds after test start.
Worker 1 stopped; the worker took 1.00 seconds, and it finished 1.00 seconds after the test start.
Worker 2 stopped; the worker took 2.00 seconds, and it finished 2.00 seconds after the test start.
Worker 3 stopped; the worker took 3.00 seconds, and it finished 3.00 seconds after the test start.
Worker 4 stopped; the worker took 4.00 seconds, and it finished 4.00 seconds after the test start.
Worker 5 stopped; the worker took 5.00 seconds, and it finished 5.00 seconds after the test start.
Test finished after 5.00 seconds.
Upvotes: 66
Reputation: 13579
Since the API you're calling is async, the Parallel.ForEach
version doesn't make much sense. You shouldnt use .Wait
in the WaitAll
version since that would lose the parallelism Another alternative if the caller is async is using Task.WhenAll
after doing Select
and ToArray
to generate the array of tasks. A second alternative is using Rx 2.0
Upvotes: 26