Reputation: 4870
I'm trying to disassemble a program to see a syscall assembly instruction (the INT instruction, I believe) and the handler with GDB and have written a little program (see below) for it that opens and closes a file.
I was able to follow the call to fopen with GDB until it executed a call.
When I tried to tell GDB "disassemble 0x...." (address of call) it responded with 'No function contains specified address.'
Is it possible to force GDB to disassemble (or display it in assembler as good as possible) that memory address? If so, how?
#include <stdio.h>
#include <stdlib.h>
int main() {
FILE* f;
f = fopen("main.c", "r");
if (!f) {
perror("open");
return -1;
}
fclose(f);
return 0;
}
Upvotes: 79
Views: 156824
Reputation: 154
There is another way which I wanted to presetn using gdb on top of the suggestions above:
Launch your program with gdb, and set a break point on main break *main
and run
The you can use info proc mappings
.
Upvotes: 0
Reputation: 22469
The accepted is not really correct. It does work in some circumstances.
(gdb) disas STARTADDRESS ENDADDRESS
The highest upvoted answer is correct. Read no further is you don't wish to understand why it is correct.
(gdb) x/i 0xdeadbeef
With an appropriately meaningless hex address.
I have an STM32 and I have relocated the code with PIC. The normal boot address is 0x8000000, with a 0x200 vector table. So a normal entry is 0x8000200. However, I have programmed the binary to 0x80040200 (two NOR flash sectors away) and wish to debug there.
The issue gdb has with this is 'file foo.elf' is showing that code is in the first range. Special command like 'disassemble' will actually look at the binary on the host. For the cross debug case, gdb would have to look at memory on the remote which could be expensive. So, it appears that the 'x /i' (examine as code) is the best option. The debug information that gdb depends on (where routines start/end) is not present in a random binary chunk.
To combine the answers above for PIC code on an embedded cross system,
You need to create multiple elf files, one for each possible target location. Use the GDB's file
command to select the one with proper symbol locations.
This will NOT work for Cross development
You can use generating gcc debug symbols. The steps are,
symbol-file
with an offset for the runtime address.(gdb) help symbol-file Load symbol table from executable file FILE. Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE OFF is an optional offset which is added to each section address.
You can then switch symbol files to a relocated run address to use the first answer.
If you have a case where the code is relocated, but data is absolute, you need to link twice and choose the relocated elf files (symbols only are relocated and code is the same). This is desirable with NOR flash that is XIP (execute-in-place) as the memory devices for .text and .rodata are different from .data and .bss. Ie, many lower-to-middle scale embedded devices. However, gcc does not support this code generation option (at least on ARM). You must use a 'static base' register (for example, r9
as u-boot does).
Upvotes: 3
Reputation: 85
full example for disassembling a memory range to C
/opt/gcc-arm-none-eabi-9-2019-q4-major/bin/arm-none-eabi-gdb
(gdb)file /root/ncs/zephyr/samples/hello_world/build_nrf9160dk_nrf9160ns/zephyr/zephyr.elf
(gdb) directory /root/ncs/zephyr/samples/hello_world/src
#here you want 1
(gdb) info line* 0x000328C0
#here you want 2, -0x04 ~ +0x04 is your range size
(gdb) disassemble /m 0x000328C0-0x04, 0x000328C0+0x04
#here with binary code
(gdb) disassemble /r 0x000328C0-0x04, 0x000328C0+0x04
(gdb) info thread
(gdb) interpreter-exec mi -thread-info
Upvotes: 1
Reputation: 43
gdb disassemble has a /m to include source code alongside the instructions. This is equivalent of objdump -S, with the extra benefit of confining to just the one function (or address-range) of interest.
Upvotes: 3
Reputation: 14653
You don't have to use gdb. GCC will do it.
gcc -S foo.c
This will create foo.s which is the assembly.
gcc -m32 -c -g -Wa,-a,-ad foo.c > foo.lst
The above version will create a listing file that has both the C and the assembly generated by it. GCC FAQ
Upvotes: 1
Reputation: 6695
This isn't the direct answer to your question, but since you seem to just want to disassemble the binary, perhaps you could just use objdump
:
objdump -d program
This should give you its dissassembly. You can add -S
if you want it source-annotated.
Upvotes: 34
Reputation: 9529
Do you only want to disassemble your actual main? If so try this:
(gdb) info line main
(gdb) disas STARTADDRESS ENDADDRESS
Like so:
USER@MACHINE /cygdrive/c/prog/dsa
$ gcc-3.exe -g main.c
USER@MACHINE /cygdrive/c/prog/dsa
$ gdb a.exe
GNU gdb 6.8.0.20080328-cvs (cygwin-special)
...
(gdb) info line main
Line 3 of "main.c" starts at address 0x401050 <main> and ends at 0x401075 <main+
(gdb) disas 0x401050 0x401075
Dump of assembler code from 0x401050 to 0x401075:
0x00401050 <main+0>: push %ebp
0x00401051 <main+1>: mov %esp,%ebp
0x00401053 <main+3>: sub $0x18,%esp
0x00401056 <main+6>: and $0xfffffff0,%esp
0x00401059 <main+9>: mov $0x0,%eax
0x0040105e <main+14>: add $0xf,%eax
0x00401061 <main+17>: add $0xf,%eax
0x00401064 <main+20>: shr $0x4,%eax
0x00401067 <main+23>: shl $0x4,%eax
0x0040106a <main+26>: mov %eax,-0xc(%ebp)
0x0040106d <main+29>: mov -0xc(%ebp),%eax
0x00401070 <main+32>: call 0x4010c4 <_alloca>
End of assembler dump.
I don't see your system interrupt call however. (its been a while since I last tried to make a system call in assembly. INT 21h though, last I recall
Upvotes: 57
Reputation: 71
fopen() is a C library function and so you won't see any syscall instructions in your code, just a regular function call. At some point, it does call open(2), but it does that via a trampoline. There is simply a jump to the VDSO page, which is provided by the kernel to every process. The VDSO then provides code to make the system call. On modern processors, the SYSCALL or SYSENTER instructions will be used, but you can also use INT 80h on x86 processors.
Upvotes: 7
Reputation: 31
If all that you want is to see the disassembly with the INTC call, use objdump -d as someone mentioned but use the -static option when compiling. Otherwise the fopen function is not compiled into the elf and is linked at runtime.
Upvotes: 3
Reputation: 5729
Yeah, disassemble is not the best command to use here. The command you want is "x/i" (examine as instructions):
(gdb) x/i 0xdeadbeef
Upvotes: 129
Reputation:
You can force gcc to output directly to assembly code by adding the -S switch
gcc -S hello.c
Upvotes: 8