Reputation: 128
I'd like to determine the position and orientation of a stereo camera relative to its previous position in world coordinates. I'm using a bumblebee XB3 camera and the motion between stereo pairs is on the order of a couple feet.
Would this be on the correct track?
Thanks for any help!
Upvotes: 4
Views: 4137
Reputation: 2724
Well, it sounds like you have a fair understanding of what you want to do! Having a pre-calibrated stereo camera (like the Bumblebee) will then deliver up point-cloud data when you need it - but it also sounds like you basically want to also use the same images to perform visual odometry (certainly the correct term) and provide absolute orientation from a last known GPS position, when the GPS breaks down.
First things first - I wonder if you've had a look at the literature for some more ideas: As ever, it's often just about knowing what to google for. The whole idea of "sensor fusion" for navigation - especially in built up areas where GPS is lost - has prompted a whole body of research. So perhaps the following (intersecting) areas of research might be helpful to you:
Issues you are going to encounter with all these methods include:
So, anyway, pragmatically speaking, you want to do this in python (via the OpenCV bindings)?
If you are using OpenCV 2.4 the (combined C/C++ and Python) new API documentation is here.
As a starting point I would suggest looking at the following sample:
/OpenCV-2.4.2/samples/python2/lk_homography.py
Which provides a nice instance of basic ego-motion estimation from optic flow using the function cv2.findHomography.
Of course, this homography H only applies if the points are co-planar (i.e. lying on the same plane under the same projective transform - so it'll work on videos of nice flat roads). BUT - by the same principal we could use the Fundamental matrix F to represent motion in epipolar geometry instead. This can be calculated by the very similar function cv2.findFundamentalMat.
Ultimately, as you correctly specify above in your question, you want the Essential matrix E - since this is the one that operates in actual physical coordinates (not just mapping between pixels along epipoles). I always think of the Fundamental matrix as a generalisation of the Essential matrix by which the (inessential) knowledge of the camera intrinsic calibration (K) is omitted, and vise versa.
Thus, the relationships can be formally expressed as:
E = K'^T F K
So, you'll need to know something of your stereo camera calibration K after all! See the famous Hartley & Zisserman book for more info.
You could then, for example, use the function cv2.decomposeProjectionMatrix to decompose the Essential matrix and recover your R orientation and t displacement.
Hope this helps! One final word of warning: this is by no means a "solved problem" for the complexities of real world data - hence the ongoing research!
Upvotes: 4