Reputation: 80346
Class Bar inherits from Foo:
class Foo(object):
def foo_meth_1(self):
return 'foometh1'
def foo_meth_2(self):
return 'foometh2'
class Bar(Foo):
def bar_meth(self):
return 'bar_meth'
Is there a way of turning all methods inherited from Foo private?
class Bar(Foo):
def bar_meth(self):
return 'bar_meth'
def __foo_meth_1(self):
return 'foometh1'
def __foo_meth_2(self):
return 'foometh2'
Upvotes: 0
Views: 342
Reputation: 2829
Python doesn't have privates, only obfuscated method names. But I suppose you could iterate over the methods of the superclass when creating the instance, removing them from yourself and creating new obfuscatingly named method names for those functions. setattr and getattr could be useful if you use a function to create obfuscated names.
With that said, it's a pretty cthuhlu-oid thing to do. You mention the intent is to keep the namespace cleaner, but this is more like mixing ammonia and chlorine. If the method needs to be hidden, hide it in the superclass. The don't create instances of the superclass -- instead create a specific class that wraps the hidden methods in public ones, which you could name the same thing but strip the leading whitespace.
Assuming I understand your intent correctly, I would suggest doing something like this:
class BaseFoo(object):
def __init__(self):
raise NotImplementedError('No instances of BaseFoo please.')
def _foo(self):
return 'Foo.'
def _bar(self):
return 'Bar.'
class HiddenFoo(BaseFoo):
def __init__(self): pass
class PublicFoo(BaseFoo):
def __init__(self): pass
foo = BaseFoo._foo
bar = BaseFoo._bar
def try_foobar(instance):
print 'Trying ' + instance.__class__.__name__
try:
print 'foo: ' + instance.foo
print 'bar: ' + instance.bar
except AttributeError, e:
print e
foo_1 = HiddenFoo()
foo_2 = PublicFoo()
try_foobar(foo_1)
try_foobar(foo_2)
And if PublicFoo.foo
would do something more than BaseFoo.foo
, you would write a wrapper that does whatever is needed, and then calls foo from the superclass.
Upvotes: 3
Reputation: 4107
You can use metaclasses, but Boo
will no longer be an actual subclass of Foo, unless you want Foo
's methods to be both 'private' and 'public' in instances of Bar
(you cannot selectively inherit names or delattr
members inherited from parent classes). Here is a very contrived example:
from inspect import getmembers, isfunction
class TurnPrivateMetaclass(type):
def __new__(cls, name, bases, d):
private = {'__%s' % i:j for i,j in getmembers(bases[0]) if isfunction(j)}
d.update(private)
return type.__new__(cls, name, (), d)
class Foo:
def foo_meth_1(self): return 'foometh1'
def foo_meth_2(self): return 'foometh2'
class Bar(Foo, metaclass=TurnPrivateMetaclass):
def bar_meth(self): return 'bar_meth'
b = Bar()
assert b.__foo_meth_1() == 'foometh1'
assert b.__foo_meth_2() == 'foometh2'
assert b.bar_meth() == 'bar_meth
If you wanted to get attribute access working, you could create a new Foo
base class in __new__
with all renamed methods removed.
Upvotes: 0
Reputation: 5114
Since foo()
and __foo()
are completely different methods with no link between them, Python is unable to understand what you want to do. So you have to explain to it step by step, meaning (like sapth said) to remove the old methods and add new ones.
This is an Object Oriented Design flaw and a better approach would be through delegation:
class Basic:
def meth_1(self):
return 'meth1'
def meth_2(self):
return 'meth2'
class Foo(Basic):
# Nothing to do here
pass
class Bar:
def __init__(self):
self.dg = Basic()
def bar_meth(self):
return 'bar_meth ' + self.__meth_1()
def __meth_1(self):
return self.dg.meth_1()
def __meth_2(self):
return self.dg.meth_2()
While Foo
inherits the Basic
class because he wants the public methods from him, Bar
will only delegate the job to Basic
because he doesn't want to integrate Basic
's interface into its own interface.
Upvotes: 0