Reputation: 69
I am using a confusion matrix to measure the performance of my classifier. This example would work fine for me (its from here), but I get the whole time TypeError: Invalid dimensions for image data
from numpy import *
import matplotlib.pyplot as plt
from pylab import *
conf_arr = [[50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [3.0, 26.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0], [4.0, 1.0, 0.0, 5.0, 0.0, 0.0, 0.0], [3.0, 0.0, 1.0, 0.0, 6.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 47.0, 0.0], [2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0]]
norm_conf = []
for i in conf_arr:
a = 0
tmp_arr = []
a = sum(i,0)
for j in i:
tmp_arr.append(float(j)/float(a))
norm_conf.append(tmp_arr)
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(111)
res = ax.imshow(array(norm_conf), cmap=cm.jet, interpolation='nearest')
cb = fig.colorbar(res)
savefig("confmat.png", format="png")
I am new to python and matplotlib. Any help?
Matplot version is 1.1.1. and here is the full traceback:
after res =... I get
TypeError Traceback (most recent call last)
C:\Python27\lib\site-packages\SimpleCV\Shell\Shell.pyc in <module>()
----> 1 res = ax.imshow(array(norm_conf), cmap=cm.jet, interpolation='nearest')
C:\Python27\lib\site-packages\matplotlib\axes.pyc in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, shape, filternorm, filter
rad, imlim, resample, url, **kwargs)
6794 filterrad=filterrad, resample=resample, **kwargs)
6795
-> 6796 im.set_data(X)
6797 im.set_alpha(alpha)
6798 self._set_artist_props(im)
C:\Python27\lib\site-packages\matplotlib\image.pyc in set_data(self, A)
409 if (self._A.ndim not in (2, 3) or
410 (self._A.ndim == 3 and self._A.shape[-1] not in (3, 4))):
--> 411 raise TypeError("Invalid dimensions for image data")
412
413 self._imcache =None
TypeError: Invalid dimensions for image data
SimpleCV:105> cb = fig.colorbar(res)
For print norm_conf I get now results: [[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],...]]
. I corrected the indentation problem. But my confusion .png is pretty distorted. Further how should I proceed to label the squares in the matrix?
Upvotes: 1
Views: 4634
Reputation: 353059
This works for me just fine (matplotlib 1.1.1rc). Originally I wanted you to confirm your matplotlib version and post the entire traceback -- by "traceback" I mean the few lines before the TypeError line which show what caused the error -- and that's still a good idea, but I think I see what the problem might be.
This is the error you'd get if norm_conf
somehow weren't being filled (i.e. norm_conf = []
):
Traceback (most recent call last):
File "mdim2.py", line 19, in <module>
res = ax.imshow(array(norm_conf), cmap=cm.jet, interpolation='nearest')
File "/usr/lib/pymodules/python2.7/matplotlib/axes.py", line 6796, in imshow
im.set_data(X)
File "/usr/lib/pymodules/python2.7/matplotlib/image.py", line 411, in set_data
raise TypeError("Invalid dimensions for image data")
TypeError: Invalid dimensions for image data
Your code looks like it might have some indentation problems, which often happens when using mixed tabs and spaces. So I'd recommend (1) trying python -tt yourprogramname.py
to see if there are whitespace errors, and (2) making sure that you're using 4-space tabs throughout.
Upvotes: 2