Ankur
Ankur

Reputation: 51118

Finding the center of a cluster

I have the following problem - made abstract to bring out the key issues.

I have 10 points each which is some distance from the other. I want to

  1. be able to find the center of the cluster i.e. the point for which the pairwise distance to each other point is minimised,
    let p(j) ~ p(k) represent the pairwise distance beteen points j and k
    p(i) is center-point of the cluster iff p(i) s.t. min[sum(p(j)~p(k))] for all 0 < j,k <= n where we have n points in the cluster
  2. determine how to split the cluster in to two clusters once the number of data points in the cluster goes above some threshold t.

This is not euclidean space. But the distances can be summarised as follows - p(i) is point i:

       p(1)    p(2)    p(3)    p(4)    p(5)    p(6)    p(7)    p(8)    p(9)    p(10)
p(1)    0       2       1       3       2       3       3       2       3        4
p(2)    2       0       1       3       2       3       3       2       3        4
p(3)    1       1       0       2       0       1       2       1       2        3
p(4)    3       3       2       0       1       2       3       2       3        4      
p(5)    2       2       1       1       0       1       2       1       2        3   
p(6)    3       3       2       2       1       0       3       2       3        4   
p(7)    3       3       2       3       2       3       0       1       2        3  
p(8)    2       2       1       2       1       2       1       0       1        2 
p(9)    3       3       2       3       2       3       2       1       0        1
p(10)   4       4       3       4       3       4       3       2       1        0 

How would I calculate which is the center point of this cluster?

Upvotes: 8

Views: 22377

Answers (5)

Keerthan Rao
Keerthan Rao

Reputation: 46

If you treat the points as a distribution, you can get the median/mean. Then, using the distance metric, you can get the the point/sample closest to the median/mean (it should have the least distance with the median/mean). This may give you more than 1 point/sample to be at the 'center'. Statistically, that may have a greater significance. Ultimately depends on what you are trying to do with it.

Upvotes: 0

Darknight
Darknight

Reputation: 2500

As far as I understand this looks like K Means Clustering, and what you are looking for is usually known as 'Medoids'.

See here: http://en.wikipedia.org/wiki/Medoids or here: http://en.wikipedia.org/wiki/K-medoids

Upvotes: 9

Bill Bell
Bill Bell

Reputation: 21663

I may be about to have that frisson that comes just before displaying utter stupidity. But doesn't this yield easily to brute force? In Python:

distances = [
[ 0 , 2 , 1 , 3 , 2 , 3 , 3 , 2 , 3 , 4 , ],
[ 2 , 0 , 1 , 3 , 2 , 3 , 3 , 2 , 3 , 4 , ],
[ 1 , 1 , 0 , 2 , 0 , 1 , 2 , 1 , 2 , 3 , ],
[ 3 , 3 , 2 , 0 , 1 , 2 , 3 , 2 , 3 , 4 , ],
[ 2 , 2 , 1 , 1 , 0 , 1 , 2 , 1 , 2 , 3 , ],
[ 3 , 3 , 2 , 2 , 1 , 0 , 3 , 2 , 3 , 4 , ],
[ 3 , 3 , 2 , 3 , 2 , 3 , 0 , 1 , 2 , 3 , ],
[ 2 , 2 , 1 , 2 , 1 , 2 , 1 , 0 , 1 , 2 , ],
[ 3 , 3 , 2 , 3 , 2 , 3 , 2 , 1 , 0 , 1 , ],
[ 4 , 4 , 3 , 4 , 3 , 4 , 3 , 2 , 1 , 0 , ],
]

currentMinimum = 99999

for point in range ( 10 ) :
    distance_sum = 0
    for second_point in range ( 10 ) :
        if point == second_point : continue
        distance_sum += distances [ point ] [ second_point ]
    print '>>>>>', point, distance_sum 

    if distance_sum < currentMinimum :
        currentMinimum = distance_sum 
        centre = point

print centre

Upvotes: 4

Martijn
Martijn

Reputation: 5673

What you're trying to do, or at least (b) belongs to Cluster Analysis. A branch of mathematics / statistics / econometrics where datapoints (e.g. points in n-dimensional space) are divided among groups or clusters. How to do this is not a trivial questions, there are many, many possible ways.

Read more at the wikipedia article on cluster analysis.

Upvotes: 1

ufukgun
ufukgun

Reputation: 7219

a)

  • find median or average values of all distances. = avgAll
  • For each p, find average distance to other machines. = avgP(i)
  • Pick the closer one as center. avgAll ~= avgP(i)

b) no idea for now..

maybe for each p, find the closer machine.

by this logic make a graph.

than somehow (i dont know yet) divide the graph

Upvotes: 1

Related Questions