Reputation: 211
I have a lisp homework I am having a hard time with it.
I have to write a function that perform a union operation. The function takes 2 inputs, either in the form of either atom or list and unions every element, preserving the order and stripping off all levels of parenthesis.
The output for the function:
(my-union 'a 'b) ;; (a b)
(my-union 'a '(b)) ;; (a b)
(my-union '(a b) '(b c)) ;; (a b c)
(my-union '(((a))) '(b(c((d e))a))) ;; (a b c d e)
I am fairly new to lisp. Here is what I have written so far and it works only for the third example:
(defun new-union (a b)
(if (not b)
a
(if (member (car b) a)
(new-union a (cdr b))
(new-union (append a (list (car b))) (cdr b)))))
Any help would be appreciated!
Upvotes: 4
Views: 3939
Reputation: 71065
One way to approach this is to separate your concerns. One is flattening; another is duplicates-removing; yet another is result-building.
Starting with empty list as your result, proceed to add into it the elements of the first list, skipping such elements that are already in the result.
Then do the same with the second list's elements, adding them to the same result list.
(defun my-union (a b &aux (res (list 1)) (p res))
(nadd-elts p a)
(nadd-elts p b)
(cdr res))
nadd-elts
would add to the end of list, destructively updating its last cell (pointed to by p
) using e.g. rplacd
. An example is here.
To add elements, nadd-elts
would emulate the flattening procedure, and add each leaf element into p
after checking res
for duplicates.
Working in functional style, without destructive update, the general approach stays the same: start with empty result list, add first list into it - without duplicates - then second.
(defun my-union (a b &aux res)
(setq res (add-into res a))
(setq res (add-into res b))
res)
Now we're left with implementing the add-into
function.
(defun add-into (res a &aux r1 r2)
(cond
((atom a) .... )
(T (setq r1 (add-into res (car a)))
(setq r2 (............ (cdr a)))
r2)))
The above can be re-written without the auxiliary variables and without set
primitives. Try to find out how... OK here's what I meant by that:
(defun my-union (a b) (add-into NIL (cons a b)))
(defun add-into (res a)
(cond
((atom a) .... )
(T (add-into (add-into res (car a))
(cdr a)))))
Upvotes: 3
Reputation: 14291
Since this is your first homework, and you are new to Lisp, here is a very simple top-down approach, not worrying about performance, and making good use of the tools CL offers:
In Common Lisp, there is already a function which removes duplicates: remove-duplicates
. Using it with the :from-end
keyword-argument will "preserve order". Now, imagine you had a function flatten
, which flattens arbitrarily nested lists. Then the solution to your question would be:
(defun new-union (list1 list2)
(remove-duplicates (flatten (list list1 list2)) :from-end t))
This is how I would approach the problem when no further restrictions are given, and there is no real reason to worry much about performance. Use as much of the present toolbox as possible and do not reinvent wheels unless necessary.
If you approach the problem like this, it boils down to writing the flatten
function, which I will leave as an exercise for you. It is not too hard, one easy option is to write a recursive function, approaching the problem like this:
If the first element of the list to be flattened is itself a list, append the flattened first element to the flattened rest. If the first element is not a list, just prepend it to the flattened rest of the list. If the input is not a list at all, just return it.
That should be a nice exercise for you, and can be done in just a few lines of code.
(If you want to be very correct, use a helper function to do the work and check in the wrapping function whether the argument really is a list. Otherwise, flatten
will work on atoms, too, which may or may not be a problem for you.)
Now, assuming you have written flatten
:
> (defun new-union (list1 list2)
(remove-duplicates (flatten (list list1 list2)) :from-end t))
NEW-UNION
> (new-union 'a 'b)
(A B)
> (new-union 'a '(b))
(A B)
> (new-union '(a b) '(b c))
(A B C)
> (new-union '(((a))) '(b (c ((d e)) a)))
(A B C D E)
Upvotes: 5
Reputation:
Unless you are not allowed to use hash table (for some reason I've encountered this as a requirement before), you could come up with an ordering function that will help you build the resulting set in the way, that you don't have to repeat the search over and over again.
Also, since nested lists are allowed your problem scales down to only removing duplicates in a tree (as you can simply append as many lists as you want before you start processing them.
Now, I'll try to show few examples of how you could do it:
;; Large difference between best and worst case.
;; Lists containing all the same items will be processed
;; in square time
(defun union-naive (list &rest lists)
(when lists (setf list (append list lists)))
(let (result)
(labels ((%union-naive (tree)
(if (consp tree)
(progn
(%union-naive (car tree))
(when (cdr tree) (%union-naive (cdr tree))))
(unless (member tree result)
(setq result (cons tree result))))))
(%union-naive list) result)))
;; Perhaps the best solution, it is practically linear time
(defun union-hash (list &rest lists)
(when lists (setf list (append list lists)))
(let ((hash (make-hash-table)) result)
(labels ((%union-hash (tree)
(if (consp tree)
(progn
(%union-hash (car tree))
(when (cdr tree) (%union-hash (cdr tree))))
(setf (gethash tree hash) t))))
(%union-hash list))
(maphash
#'(lambda (a b)
(declare (ignore b))
(push a result)) hash)
result))
;; This will do the job in more time, then the
;; solution with the hash-map, but it requires
;; significantly less memory. Memory is, in fact
;; a more precious resource some times, but you
;; have to decide what algo to use based on the
;; data size
(defun union-flatten (list &rest lists)
(when lists (setf list (append list lists)))
(labels ((%flatten (tree)
(if (consp tree)
(if (cdr tree)
(nconc (%flatten (car tree))
(%flatten (cdr tree)))
(%flatten (car tree)))
(list tree))))
;; the code below is trying to do something
;; that you could've done using
;; (remove-duplicates (%flatten list))
;; however sorting and then removing duplicates
;; may prove to be more efficient
(reduce
#'(lambda (a b)
(cond
((atom a) (list a))
((eql (car a) b) b)
(t (cons b a))))
(sort (%flatten list)
#'(lambda (a b)
(string< (symbol-name a)
(symbol-name b)))))))
(union-naive '(((a))) '(b(c((d e))a)))
(union-hash '(((a))) '(b(c((d e))a)))
(union-flatten '(((a))) '(b(c((d e))a)))
Notice that the function I've used to order elements is not universal, but you would probably be able to come up with an alternative function for any sort of data. Any fast hashing function in general would do, I've used this one for simplicity.
Upvotes: 2