Reputation: 61214
I've been searching for a while any answer to my question. I read this, this and this and some others related but I still get not answer.
My problem is quite simple (I hope it is) but the answer is not (at least for myself), I want to import some economic data from this web which is an indicator for Nicaraguan economic activity measured each month, so far I've tried this:
library(XML)
u <- "http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm"
u <- htmlParse(u,encoding="UTF-8")
imae <- readHTMLTable(doc=u, header=T)
imae
library(httr)
u2 <- "http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm"
page <- GET(u2, user_agent("httr"))
x <- readHTMLTable(text_content(page), as.data.frame=TRUE)
with no success as you can imagine. The first chunk of code gave me this output
$`NULL`
BANCO CENTRAL DE NICARAGUA NA NA NA NA NA NA NA NA NA NA NA NA NA
1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
2 <U+633C><U+3E64>ndice Mensual de Actividad Económica(IMAE) <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
3 (Base: 1994=100) <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
4 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
5 Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio
6 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
7 1994 101.6 107.6 100.1 95.7 94.7 92.8 92.1 96.8 98.5 97.4 101.7 121.1 100.0
8 Fuente: BCN. <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
I tried using skip.rows=1:5
but it doesn't really change the main result which is too much NA
. Is there anybody who can shed some light on this question?
The expected result is a data.frame with the information shown in this web
Upvotes: 10
Views: 531
Reputation: 193677
As I mentioned in my comment, the problem is most likely arising because of the poorly coded table.
You can try an approach something like the following (tested on Ubuntu using RStudio). It requires that you have wget and html tidy installed. If you don't want to install these useful programs, jump to the updated part of this answer.
Download the page and "tidy" it up.
system("wget http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm")
system("tidy 4.IMAE.htm > new.html")
Proceed with R as you normally would
library(XML)
u <- htmlParse("new.html")
imae <- readHTMLTable(u)
If we view the output of the above readHTMLTable
, we would see that we need to skip a few rows. Let's run it again:
imae <- readHTMLTable(u, skip.rows=c(1:5, 7, 27, 28), header=TRUE)
imae
# $`NULL`
# Año Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Promedio
# 1 1994 101.6 107.6 100.1 95.7 94.7 92.8 92.1 96.8 98.5 97.4 101.7 121.1 100.0
# 2 1995 113.2 105.0 113.6 98.0 100.9 95.4 99.8 101.5 108.3 107.1 107.6 133.2 107.0
# 3 1996 123.6 116.0 109.1 107.3 94.8 101.2 100.7 115.3 110.6 112.7 117.5 137.7 112.2
# 4 1997 133.4 115.9 117.4 118.8 120.4 108.2 107.4 111.1 120.3 117.7 119.5 142.3 119.4
# 5 1998 131.4 120.4 127.9 118.4 130.2 116.5 122.1 129.7 127.3 127.5 112.7 156.6 126.7
# 6 1999 146.0 139.6 146.9 134.8 140.6 131.8 130.6 128.3 128.9 131.8 142.7 172.6 139.5
# 7 2000 157.8 142.1 147.3 138.5 137.7 135.7 128.9 131.2 141.7 143.0 156.6 191.2 146.0
# 8 2001 163.3 143.8 154.8 141.5 147.6 134.0 135.7 143.3 138.2 138.8 145.3 187.3 147.8
# 9 2002 152.1 144.7 143.3 142.1 143.1 131.9 136.1 145.7 146.4 147.8 157.5 185.0 148.0
# 10 2003 159.3 151.4 149.1 142.7 139.7 139.1 145.6 147.8 154.9 158.4 157.8 195.7 153.5
# 11 2004 172.8 157.1 166.9 153.6 161.2 150.5 155.3 153.3 156.6 155.6 167.7 213.0 163.6
# 12 2005 183.1 170.6 173.6 158.7 160.8 158.5 158.8 168.7 165.8 165.4 178.4 218.8 171.8
# 13 2006 187.7 177.8 185.6 161.8 166.4 163.2 164.7 175.1 175.1 185.3 189.6 231.2 180.3
# 14 2007 200.1 184.1 196.5 180.1 169.7 171.4 181.6 180.9 173.0 182.8 202.0 236.7 188.2
# 15 2008 205.4 194.4 193.1 205.9 171.0 174.8 181.3 190.7 183.1 182.7 182.5 244.7 192.5
# 16 2009 195.7 191.0 190.8 177.0 168.1 172.6 179.2 185.6 178.9 181.4 191.3 241.4 187.7
# 17 2010 195.2 193.7 205.1 185.2 179.3 190.1 191.6 190.0 193.5 197.6 210.9 266.0 199.8
# 18 2011 213.9 207.4 217.3 198.7 196.1 198.8 191.9 210.0 203.7 207.9 217.3 274.5 211.5
# 19 2012 233.6 233.6
If you can live with having to do some text cleanup for the accented characters, the W3C offers an online implementation of html tidy. This allows you to write a basic function like the following:
tidyHTML <- function(URL) {
require(XML)
URL = gsub("/", "%2F", URL)
URL <- gsub(":", "%3A", URL)
URL <- paste("http://services.w3.org/tidy/tidy?docAddr=", URL, sep = "")
htmlParse(URL)
}
Usage is simple:
u <- tidyHTML("http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm")
readHTMLTable(u)
Upvotes: 10
Reputation: 3689
This is a bit of a hack job which sort of works if the table is not well enough structured as in the other responses you linked to. But it is really more of a one-off that works if the format doesn't change, but beware--can be risky. There are likely more general solutions that folks can add.
require(RCurl)
require(XML)
u <- "http://www.bcn.gob.ni/estadisticas/trimestrales_y_mensuales/siec/datos/4.IMAE.htm"
webpage <- getURL(u)
lines <- readLines(tc <- textConnection(webpage)); close(tc)
pagetree <- htmlTreeParse(lines, error=function(...){}, useInternalNodes = TRUE)
# parse tree by any tables
x <- xpathSApply(pagetree, "//*/table", xmlValue)
# remove white space and such w/ regexes
unlisted <- unlist(strsplit(x, "\n"))
notabs <- gsub("\t","",unlisted)
nowhitespace <- sub("^[[:space:]]*(.*?)[[:space:]]*$", "\\1", notabs, perl=TRUE)
data <- nowhitespace[!(nowhitespace %in% c("", "|"))]
here comes the dodgy part:
months<-data[5:16]
data_out<-data[18:(length(data)-4)] #omits 2012 data to easily fit structure argument
finalhack<-data.frame(t(structure(
data_out,dim = c(14,18),.Dimnames =
list(c('year',months,'index'),seq(1994,2011)))))
Upvotes: 6