Reputation: 831
Using MS Visual C++2012
A class has a member of type std::atomic_flag
class A {
public:
...
std::atomic_flag lockFlag;
A () { std::atomic_flag_clear (&lockFlag); }
};
There is an object of type A
A object;
who can be accessed by two (Boost) threads
void thr1(A* objPtr) { ... }
void thr2(A* objPtr) { ... }
The idea is wait the thread if the object is being accessed by the other thread.
The question is: do it is possible construct such mechanism with an atomic_flag
object? Not to say that for the moment, I want some lightweight that a boost::mutex.
By the way the process involved in one of the threads is very long query to a dBase who get many rows, and I only need suspend it in a certain zone of code where the collision occurs (when processing each row) and I can't wait the entire thread to finish join()
.
I've tryed in each thread some as:
thr1 (A* objPtr) {
...
while (std::atomic_flag_test_and_set_explicit (&objPtr->lockFlag, std::memory_order_acquire)) {
boost::this_thread::sleep(boost::posix_time::millisec(100));
}
... /* Zone to portect */
std::atomic_flag_clear_explicit (&objPtr->lockFlag, std::memory_order_release);
... /* the process continues */
}
But with no success, because the second thread hangs. In fact, I don't completely understand the mechanism involved in the atomic_flag_test_and_set_explicit
function. Neither if such function returns inmediately or can delay until the flag can be locked.
Also it is a mistery to me how to get a lock mechanism with such a function who always set the value, and return the previous value. with no option to only read the actual setting.
Any suggestion are welcome.
Upvotes: 2
Views: 777
Reputation: 7515
To actually answer the question asked: Yes, you can use std::atomic_flag to create a thread locking object called a spinlock.
#include <atomic>
class atomic_lock
{
public:
atomic_lock()
: lock_( ATOMIC_FLAG_INIT )
{}
void lock()
{
while ( lock_.test_and_set() ) { } // Spin until the lock is acquired.
}
void unlock()
{
lock_.clear();
}
private:
std::atomic_flag lock_;
};
Upvotes: 1
Reputation: 68691
It looks like you're trying to write a spinlock. Yes, you can do that with std::atomic_flag
, but you are better off using std::mutex
instead. Don't use atomics unless you really know what you're doing.
Upvotes: 2
Reputation: 393809
By the way the process involved in one of the threads is very long query to a dBase who get many rows, and I only need suspend it in a certain zone of code where the collision occurs (when processing each row) and I can't wait the entire thread to finish join().
Such a zone is known as the critical section. The simplest way to work with a critical section is to lock by mutual exclusion.
The mutex solution suggested is indeed the way to go, unless you can prove that this is a hotspot and the lock contention is a performance problem. Lock-free programming using just atomic and intrinsics is enormously complex and cannot be recommended at this level.
Here's a simple example showing how you could do this (live on http://liveworkspace.org/code/6af945eda5132a5221db823fa6bde49a):
#include <iostream>
#include <thread>
#include <mutex>
struct A
{
std::mutex mux;
int x;
A() : x(0) {}
};
void threadf(A* data)
{
for(int i=0; i<10; ++i)
{
std::lock_guard<std::mutex> lock(data->mux);
data->x++;
}
}
int main(int argc, const char *argv[])
{
A instance;
auto t1 = std::thread(threadf, &instance);
auto t2 = std::thread(threadf, &instance);
t1.join();
t2.join();
std::cout << instance.x << std::endl;
return 0;
}
Upvotes: 8