Reputation: 4022
An interesting problem I've been pondering the past few days is how to copy one integer's bits into another integer at a given position in the destination integer. So, for example, given the destination integer 0xdeadbeef
and the source integer 0xabcd
, the idea would be to get a result of 0xabcdbeef
(given a destination position of 16 bits) or 0xdeabcdef
(given a destination position of 8 bits).
With the arbitrary limitation of avoiding conditionals or loops (allowing myself to use just mathematical/bitwise operations), I developed the following function (C++)
int setbits(int destination, int source, int at, int numbits)
{
int ones = ((1<<(numbits))-1)<<at;
return (ones|destination)^((~source<<at)&ones);
}
where at
is the place where the source bits should be copied into the destination number (0-31) and numbits
is the number of bits being copied from source
(1-32). As far as I can tell, this algorithm works for all values except for at
= 0 and numbits
= 32 (the case when the entire destination integer is being overwritten by the source integer) due to the fact that 1<<32 results in 1 (since the shift wraps around) as opposed to 0.
My questions are:
Algorithm design is usually a weak point for me, so I have no idea whether or not my algorithm is 'as good as it gets' when only using mathematical/bitwise operations. Thanks
Upvotes: 18
Views: 8214
Reputation: 1
uint32_t copy_bits(uint32_t dst, uint32_t src, uint8_t end_bit, uint8_t start_bit)
{
uint32_t left, right, mask, result;
if (end_bit <= start_bit)
{
printf("%s: end_bit:%d shall be greater than start_bit: %d\n", __FUNCTION__, end_bit, start_bit);
return 0;
}
left = ~0; // All Fs
right = ~0;
result = 0;
left >>= ((sizeof(uint32_t)*8) - end_bit); // Create left half of mask
right <<= start_bit; // Create right half of mask
mask = (left & right); // Now you have the mask for specific bits
result = (dst & (~mask)) | (src & (mask));
printf("%s, dst: 0x%08x, src: 0x%08x, end_bit: %d, start_bit: %d, mask: 0x%08x, result: 0x%08x\n",
__FUNCTION__, dst, src, end_bit, start_bit, mask, result);
return result;
}
Upvotes: 0
Reputation: 372
// SET OF FUNCTIONS
//########## BIT - BIT
template < typename var_t > inline var_t bit_V ( uint8_t b ) { return var_t(1) << b; } // Same as usual macros, but this one converts de variable type, so that you can use it in uint8_t to uint64_t for example.
template < typename var_t > inline var_t bit_get ( const var_t & V , uint8_t b ) { return V & bit_V<var_t>(b); } // Can be used as bool or to get the mask of the bit.
template < typename var_t > inline var_t bit_settled ( const var_t & V , uint8_t b ) { return V | bit_V<var_t>(b); }
template < typename var_t > inline var_t bit_unsettled ( const var_t & V , uint8_t b ) { return V &~ bit_V<var_t>(b); }
template < typename var_t > inline void bit_set ( var_t & V , uint8_t b ) { V |= bit_V<var_t>(b); }
template < typename var_t > inline void bit_unset ( var_t & V , uint8_t b ) { V &= ~bit_V<var_t>(b); }
template < typename var_t > inline void bit_mod ( var_t & V , uint8_t b , bool set ) { if (set) bit_set(V,b); else bit_unset(V,b); } // compiler will optimize depending on if 'set' is constant.
template < typename var_t > inline void bit_cpy ( var_t & V , const var_t & S , uint8_t b ) { var_t t = bit_get(S,b); V |= t; V &~ t; }
template < typename var_t > inline void bit_cpy ( var_t & V , const var_t & S , uint8_t bV , uint8_t bM ) { bit_mod(V,bV,bit_get(S,bM)); }
/// MULTIPLE BITS:
template < typename var_t > inline void bits_set ( var_t & V , const var_t & S ) { V |= S; }
template < typename var_t > inline void bits_unset ( var_t & V , const var_t & S ) { V &= ~S; }
/// ONLY WITH UNSIGNED INTS: 'at' parameters are refered to the less significant bit (lsb), starting at 0 index ( a byte would have 7 to 0 bits ).
template < typename var_t > void bits_cpy ( var_t & V , const var_t & S , uint8_t numBits , uint8_t atlsb = 0 ) { // I choosed not to make this one inline
var_t mask = (~var_t(0)>>(sizeof(var_t)*8 - numBits))<<atlsb;
bits_unset ( V , mask ) ;
bits_set ( V , S & mask ) ;
}
template < typename var_t > void bits_cpy ( var_t & V , const var_t & S , uint8_t numBits , uint8_t atVlsb , uint8_t atSlsb ) { // I choosed not to make this one inline
bits_cpy ( V , (atVlsb>atSlsb)?(S<<(atVlsb-atSlsb)):(S>>(atSlsb-atVlsb)) , numBits , atVlsb ) ;
}
template < typename var_t > var_t bits_cpyd ( const var_t & V , const var_t & S , uint8_t numBits , uint8_t atlsb = 0 ) {
var_t r = V;
bits_cpy (r,S,numBits,atlsb);
return r;
}
template < typename var_t > var_t bits_cpyd ( const var_t & V , const var_t & S , uint8_t numBits , uint8_t atVlsb , uint8_t atSlsb ) {
var_t r = V;
bits_cpy (r,S,numBits,atVlsb,atSlsb);
return r;
}
//########## BIT - BIT - EXAMPLE OF USE WITH THE MOST RELEVANT FUNCTIONS:
// I used them inside functions, to get/set two variables inside a class, u and c
void u_set ( edrfu_t u ) { bits_cpy <uint32_t> ( CFG , u , 8 , 2 ,0 );}
edrfu_t u_get () { return bits_cpyd <uint32_t> ( 0 , CFG , 8 , 0 ,2 );}
void c_set ( edrfc_t c ) { bits_cpy <uint32_t> ( CFG , c , 2 );}
edrfc_t c_get () { return bits_cpyd <uint32_t> ( 0 , CFG , 2 );}
Upvotes: -1
Reputation: 29335
Generalized GRB-fnieto form...
template <typename T>
T setbits4(T destination, T source, int at, int numbits)
{
T mask = (((T)-1)>>(sizeof(T)*8-numbits))<<at; // 4th aproach
return (destination&~mask)|((source<<at)&mask);
}
Upvotes: 2
Reputation: 6439
I don't think it can be done more efficient unless you write assembler.
You can improve the readability and solve your overflow problem changing some little things:
int setbits2(int destination, int source, int at, int numbits)
{
// int mask = ((1LL<<numbits)-1)<<at; // 1st aproach
int mask = ((~0u)>>(sizeof(int)*8-numbits))<<at; // 2nd aproach
return (destination&~mask)|((source<<at)&mask);
}
More efficient assembler version (VC++):
// 3rd aproach
#define INT_SIZE 32;
int setbits3(int destination, int source, int at, int numbits)
{ __asm {
mov ecx, INT_SIZE
sub ecx, numbits
or eax, -1
shr eax, cl
mov ecx, at
shl eax, cl // mask == eax
mov ebx, eax
not eax
and eax, destination
mov edx, source
shl edx, cl
and edx, ebx
or eax, edx
}}
Upvotes: 8
Reputation: 16188
I don't think it's the case that 1<<32 wraps (otherwise, why doesn't 2<<31 also wrap?), instead I think that internally modulus 32 is applied to the second operator, so that 1<<32 is actually equivalent to 1<<0. Also, consider changing the parameters types from "int" to "unsigned int". To get the value of "ones" without running into the "1<<32" problem, you can do this:
unsigned int ones = (0xffffffff >> (32-numbits)) << at;
I don't believe there are any "standard" methods for this kind of operation. I'm sure there are other ways of using bitwise operators in different ways to achieve the same outcome, but your algorithm is as good as any.
Having said that, though, maintainability and documentation is also important. Your function would benefit from the algorithm being documented with a comment, especially to explain how you use the bitwise XOR -- which is clever, but not easy to understand at first glance.
Upvotes: 3
Reputation: 56725
It pretty good: I tried this alternate version, but yours was about 30% faster in testing:
int[] bits = new int[] {0,1,3,7,15,31,63,127,255,511,1023
,2047,4095,8192,16383,32767,65535,131071,262143,524287
,1048575,2097151,4194303,8388607,16777215,33554431,67108863
,134217727,268435455,536870911,1073741823,2147483647,-1};
public int setbits2(int destination, int source, int at, int numbits)
{
int ones = bits[numbits + at] & ~bits[at];
return (destination & ~ones) | ((source << at) & ones);
}
Upvotes: 2
Reputation: 27854
I think it hardly could be more efficient. Moreover, bitwise operations are much faster than any algebraic operations.
Upvotes: 0