Reputation: 11350
Working with a data frame similar to this:
set.seed(100)
df <- data.frame(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)), val = runif(15))
df <- df[order(df$cat, df$val), ]
df
cat val
1 aaa 0.05638315
2 aaa 0.25767250
3 aaa 0.30776611
4 aaa 0.46854928
5 aaa 0.55232243
6 bbb 0.17026205
7 bbb 0.37032054
8 bbb 0.48377074
9 bbb 0.54655860
10 bbb 0.81240262
11 ccc 0.28035384
12 ccc 0.39848790
13 ccc 0.62499648
14 ccc 0.76255108
15 ccc 0.88216552
I am trying to add a column with numbering within each group. Doing it this way obviously isn't using the powers of R:
df$num <- 1
for (i in 2:(length(df[,1]))) {
if (df[i,"cat"]==df[(i-1),"cat"]) {
df[i,"num"]<-df[i-1,"num"]+1
}
}
df
cat val num
1 aaa 0.05638315 1
2 aaa 0.25767250 2
3 aaa 0.30776611 3
4 aaa 0.46854928 4
5 aaa 0.55232243 5
6 bbb 0.17026205 1
7 bbb 0.37032054 2
8 bbb 0.48377074 3
9 bbb 0.54655860 4
10 bbb 0.81240262 5
11 ccc 0.28035384 1
12 ccc 0.39848790 2
13 ccc 0.62499648 3
14 ccc 0.76255108 4
15 ccc 0.88216552 5
What would be a good way to do this?
Upvotes: 252
Views: 188680
Reputation: 1253
A collapse
/data.table
solution which uses a grouped cumulative sum on a sequence of ones.
library(data.table)
library(collapse)
set.seed(100)
df <- data.table(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)),
val = runif(15))
setorder(df, cat, val)
df[, id := fcumsum(alloc(1L, .N), g = cat)][]
#> cat val id
#> 1: aaa 0.05638315 1
#> 2: aaa 0.25767250 2
#> 3: aaa 0.30776611 3
#> 4: aaa 0.46854928 4
#> 5: aaa 0.55232243 5
#> 6: bbb 0.17026205 1
#> 7: bbb 0.37032054 2
#> 8: bbb 0.48377074 3
#> 9: bbb 0.54655860 4
#> 10: bbb 0.81240262 5
#> 11: ccc 0.28035384 1
#> 12: ccc 0.39848790 2
#> 13: ccc 0.62499648 3
#> 14: ccc 0.76255108 4
#> 15: ccc 0.88216552 5
Created on 2023-06-07 with reprex v2.0.2
Upvotes: 1
Reputation: 887118
In devel
version of dplyr
library(dplyr)
df %>%
mutate(num = row_number(), .by = "cat")
Upvotes: 4
Reputation: 52268
Very simple, tidy solutions.
Row number for entire data.frame
library(tidyverse)
iris %>%
mutate(row_num = seq_along(Sepal.Length)) %>%
head
Sepal.Length Sepal.Width Petal.Length Petal.Width Species row_num
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
3 4.7 3.2 1.3 0.2 setosa 3
.. ... ... ... ... ...... ...
148 6.5 3.0 5.2 2.0 virginica 148
149 6.2 3.4 5.4 2.3 virginica 149
150 5.9 3.0 5.1 1.8 virginica 150
Row number by group in data.frame
iris %>%
group_by(Species) %>%
mutate(num_in_group=seq_along(Species)) %>%
as.data.frame
Sepal.Length Sepal.Width Petal.Length Petal.Width Species num_in_group
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
3 4.7 3.2 1.3 0.2 setosa 3
.. ... ... ... ... ...... ..
48 4.6 3.2 1.4 0.2 setosa 48
49 5.3 3.7 1.5 0.2 setosa 49
50 5.0 3.3 1.4 0.2 setosa 50
51 7.0 3.2 4.7 1.4 versicolor 1
52 6.4 3.2 4.5 1.5 versicolor 2
53 6.9 3.1 4.9 1.5 versicolor 3
.. ... ... ... ... ...... ..
98 6.2 2.9 4.3 1.3 versicolor 48
99 5.1 2.5 3.0 1.1 versicolor 49
100 5.7 2.8 4.1 1.3 versicolor 50
101 6.3 3.3 6.0 2.5 virginica 1
102 5.8 2.7 5.1 1.9 virginica 2
103 7.1 3.0 5.9 2.1 virginica 3
.. ... ... ... ... ...... ..
148 6.5 3.0 5.2 2.0 virginica 48
149 6.2 3.4 5.4 2.3 virginica 49
150 5.9 3.0 5.1 1.8 virginica 50
Upvotes: 2
Reputation: 2528
I would like to add a data.table
variant using the rank()
function which provides the additional possibility to change the ordering and thus makes it a bit more flexible than the seq_len()
solution and is pretty similar to row_number functions in RDBMS.
# Variant with ascending ordering
library(data.table)
dt <- data.table(df)
dt[, .( val
, num = rank(val))
, by = list(cat)][order(cat, num),]
cat val num
1: aaa 0.05638315 1
2: aaa 0.25767250 2
3: aaa 0.30776611 3
4: aaa 0.46854928 4
5: aaa 0.55232243 5
6: bbb 0.17026205 1
7: bbb 0.37032054 2
8: bbb 0.48377074 3
9: bbb 0.54655860 4
10: bbb 0.81240262 5
11: ccc 0.28035384 1
12: ccc 0.39848790 2
13: ccc 0.62499648 3
14: ccc 0.76255108 4
# Variant with descending ordering
dt[, .( val
, num = rank(desc(val)))
, by = list(cat)][order(cat, num),]
Edit on 2021-04-16 to make the switch between descending and ascending order more fail-safe
Upvotes: 9
Reputation: 83
Another base R solution would be to split
the data frame per cat
, after that using lapply
: add a column with number 1:nrow(x)
. The last step is to have your final data frame back with do.call
, that is:
df_split <- split(df, df$cat)
df_lapply <- lapply(df_split, function(x) {
x$num <- seq_len(nrow(x))
return(x)
})
df <- do.call(rbind, df_lapply)
Upvotes: 0
Reputation: 101
Using the rowid()
function in data.table
:
> set.seed(100)
> df <- data.frame(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)), val = runif(15))
> df <- df[order(df$cat, df$val), ]
> df$num <- data.table::rowid(df$cat)
> df
cat val num
4 aaa 0.05638315 1
2 aaa 0.25767250 2
1 aaa 0.30776611 3
5 aaa 0.46854928 4
3 aaa 0.55232243 5
10 bbb 0.17026205 1
8 bbb 0.37032054 2
6 bbb 0.48377074 3
9 bbb 0.54655860 4
7 bbb 0.81240262 5
13 ccc 0.28035384 1
14 ccc 0.39848790 2
11 ccc 0.62499648 3
15 ccc 0.76255108 4
12 ccc 0.88216552 5
Upvotes: 4
Reputation: 39858
Another dplyr
possibility could be:
df %>%
group_by(cat) %>%
mutate(num = 1:n())
cat val num
<fct> <dbl> <int>
1 aaa 0.0564 1
2 aaa 0.258 2
3 aaa 0.308 3
4 aaa 0.469 4
5 aaa 0.552 5
6 bbb 0.170 1
7 bbb 0.370 2
8 bbb 0.484 3
9 bbb 0.547 4
10 bbb 0.812 5
11 ccc 0.280 1
12 ccc 0.398 2
13 ccc 0.625 3
14 ccc 0.763 4
15 ccc 0.882 5
Upvotes: 12
Reputation: 3043
Here is a small improvement trick that allows sort 'val' inside the groups:
# 1. Data set
set.seed(100)
df <- data.frame(
cat = c(rep("aaa", 5), rep("ccc", 5), rep("bbb", 5)),
val = runif(15))
# 2. 'dplyr' approach
df %>%
arrange(cat, val) %>%
group_by(cat) %>%
mutate(id = row_number())
Upvotes: 14
Reputation: 83215
For making this r-faq question more complete, a base R alternative with sequence
and rle
:
df$num <- sequence(rle(df$cat)$lengths)
which gives the intended result:
> df cat val num 4 aaa 0.05638315 1 2 aaa 0.25767250 2 1 aaa 0.30776611 3 5 aaa 0.46854928 4 3 aaa 0.55232243 5 10 bbb 0.17026205 1 8 bbb 0.37032054 2 6 bbb 0.48377074 3 9 bbb 0.54655860 4 7 bbb 0.81240262 5 13 ccc 0.28035384 1 14 ccc 0.39848790 2 11 ccc 0.62499648 3 15 ccc 0.76255108 4 12 ccc 0.88216552 5
If df$cat
is a factor variable, you need to wrap it in as.character
first:
df$num <- sequence(rle(as.character(df$cat))$lengths)
Upvotes: 36
Reputation: 115392
Use ave
, ddply
, dplyr
or data.table
:
df$num <- ave(df$val, df$cat, FUN = seq_along)
or:
library(plyr)
ddply(df, .(cat), mutate, id = seq_along(val))
or:
library(dplyr)
df %>% group_by(cat) %>% mutate(id = row_number())
or (the most memory efficient, as it assigns by reference within DT
):
library(data.table)
DT <- data.table(df)
DT[, id := seq_len(.N), by = cat]
DT[, id := rowid(cat)]
Upvotes: 402
Reputation: 10956
Here is an option using a for
loop by groups rather by rows (like OP did)
for (i in unique(df$cat)) df$num[df$cat == i] <- seq_len(sum(df$cat == i))
Upvotes: 8