Reputation: 68256
How to remove rows with duplicate index values?
In the weather DataFrame below, sometimes a scientist goes back and corrects observations -- not by editing the erroneous rows, but by appending a duplicate row to the end of a file.
I'm reading some automated weather data from the web (observations occur every 5 minutes, and compiled into monthly files for each weather station.) After parsing a file, the DataFrame looks like:
Sta Precip1hr Precip5min Temp DewPnt WindSpd WindDir AtmPress
Date
2001-01-01 00:00:00 KPDX 0 0 4 3 0 0 30.31
2001-01-01 00:05:00 KPDX 0 0 4 3 0 0 30.30
2001-01-01 00:10:00 KPDX 0 0 4 3 4 80 30.30
2001-01-01 00:15:00 KPDX 0 0 3 2 5 90 30.30
2001-01-01 00:20:00 KPDX 0 0 3 2 10 110 30.28
Example of a duplicate case:
import pandas as pd
import datetime
startdate = datetime.datetime(2001, 1, 1, 0, 0)
enddate = datetime.datetime(2001, 1, 1, 5, 0)
index = pd.date_range(start=startdate, end=enddate, freq='H')
data1 = {'A' : range(6), 'B' : range(6)}
data2 = {'A' : [20, -30, 40], 'B' : [-50, 60, -70]}
df1 = pd.DataFrame(data=data1, index=index)
df2 = pd.DataFrame(data=data2, index=index[:3])
df3 = df2.append(df1)
df3
A B
2001-01-01 00:00:00 20 -50
2001-01-01 01:00:00 -30 60
2001-01-01 02:00:00 40 -70
2001-01-01 03:00:00 3 3
2001-01-01 04:00:00 4 4
2001-01-01 05:00:00 5 5
2001-01-01 00:00:00 0 0
2001-01-01 01:00:00 1 1
2001-01-01 02:00:00 2 2
And so I need df3
to eventually become:
A B
2001-01-01 00:00:00 0 0
2001-01-01 01:00:00 1 1
2001-01-01 02:00:00 2 2
2001-01-01 03:00:00 3 3
2001-01-01 04:00:00 4 4
2001-01-01 05:00:00 5 5
I thought that adding a column of row numbers (df3['rownum'] = range(df3.shape[0])
) would help me select the bottom-most row for any value of the DatetimeIndex
, but I am stuck on figuring out the group_by
or pivot
(or ???) statements to make that work.
Upvotes: 477
Views: 514898
Reputation: 2167
Another way using pandas.Index.drop_duplicates()
,
df.loc[df.index.drop_duplicates(keep='first'), :]
But, it is slower compared to the accepted answer. Just use that.
%timeit df.reset_index().drop_duplicates(subset='Notasi', keep='first').set_index('Notasi')
281 µs ± 1.41 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit df.groupby(df.index).first()
212 µs ± 3.65 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit df[~df.index.duplicated(keep='first')]
38.1 µs ± 116 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit df.loc[df.index.drop_duplicates(keep='first'), :]
104 µs ± 721 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
Upvotes: 1
Reputation: 133
I had the experience with this same error, and after diving into every df, it turns out one of the had 2 columns with the same name, you mention you drop some columns, probably this could be a reason.
Upvotes: 0
Reputation: 10006
I would suggest using the duplicated method on the Pandas Index itself:
df3 = df3[~df3.index.duplicated(keep='first')]
While all the other methods work, .drop_duplicates
is by far the least performant for the provided example. Furthermore, while the groupby method is only slightly less performant, I find the duplicated method to be more readable.
Using the sample data provided:
>>> %timeit df3.reset_index().drop_duplicates(subset='index', keep='first').set_index('index')
1000 loops, best of 3: 1.54 ms per loop
>>> %timeit df3.groupby(df3.index).first()
1000 loops, best of 3: 580 µs per loop
>>> %timeit df3[~df3.index.duplicated(keep='first')]
1000 loops, best of 3: 307 µs per loop
Note that you can keep the last element by changing the keep argument to 'last'
.
It should also be noted that this method works with MultiIndex
as well (using df1 as specified in Paul's example):
>>> %timeit df1.groupby(level=df1.index.names).last()
1000 loops, best of 3: 771 µs per loop
>>> %timeit df1[~df1.index.duplicated(keep='last')]
1000 loops, best of 3: 365 µs per loop
Upvotes: 870
Reputation: 3519
This adds the index as a DataFrame column, drops duplicates on that, then removes the new column:
df = (df.reset_index()
.drop_duplicates(subset='index', keep='last')
.set_index('index').sort_index())
Note that the use of .sort_index()
above at the end is as needed and is optional.
Upvotes: 142
Reputation:
Remove duplicates (Keeping First)
idx = np.unique( df.index.values, return_index = True )[1]
df = df.iloc[idx]
Remove duplicates (Keeping Last)
df = df[::-1]
df = df.iloc[ np.unique( df.index.values, return_index = True )[1] ]
Tests: 10k loops using OP's data
numpy method - 3.03 seconds
df.loc[~df.index.duplicated(keep='first')] - 4.43 seconds
df.groupby(df.index).first() - 21 seconds
reset_index() method - 29 seconds
Upvotes: 7
Reputation: 237
If anyone like me likes chainable data manipulation using the pandas dot notation (like piping), then the following may be useful:
df3 = df3.query('~index.duplicated()')
This enables chaining statements like this:
df3.assign(C=2).query('~index.duplicated()').mean()
Upvotes: 6
Reputation: 68256
Oh my. This is actually so simple!
grouped = df3.groupby(level=0)
df4 = grouped.last()
df4
A B rownum
2001-01-01 00:00:00 0 0 6
2001-01-01 01:00:00 1 1 7
2001-01-01 02:00:00 2 2 8
2001-01-01 03:00:00 3 3 3
2001-01-01 04:00:00 4 4 4
2001-01-01 05:00:00 5 5 5
Follow up edit 2013-10-29
In the case where I have a fairly complex MultiIndex
, I think I prefer the groupby
approach. Here's simple example for posterity:
import numpy as np
import pandas
# fake index
idx = pandas.MultiIndex.from_tuples([('a', letter) for letter in list('abcde')])
# random data + naming the index levels
df1 = pandas.DataFrame(np.random.normal(size=(5,2)), index=idx, columns=['colA', 'colB'])
df1.index.names = ['iA', 'iB']
# artificially append some duplicate data
df1 = df1.append(df1.select(lambda idx: idx[1] in ['c', 'e']))
df1
# colA colB
#iA iB
#a a -1.297535 0.691787
# b -1.688411 0.404430
# c 0.275806 -0.078871
# d -0.509815 -0.220326
# e -0.066680 0.607233
# c 0.275806 -0.078871 # <--- dup 1
# e -0.066680 0.607233 # <--- dup 2
and here's the important part
# group the data, using df1.index.names tells pandas to look at the entire index
groups = df1.groupby(level=df1.index.names)
groups.last() # or .first()
# colA colB
#iA iB
#a a -1.297535 0.691787
# b -1.688411 0.404430
# c 0.275806 -0.078871
# d -0.509815 -0.220326
# e -0.066680 0.607233
Upvotes: 85
Reputation: 49
Unfortunately, I don't think Pandas allows one to drop dups off the indices. I would suggest the following:
df3 = df3.reset_index() # makes date column part of your data
df3.columns = ['timestamp','A','B','rownum'] # set names
df3 = df3.drop_duplicates('timestamp',take_last=True).set_index('timestamp') #done!
Upvotes: 4