Reputation: 2157
I have an image of a chessboard taken at some angle. Now I want to warp perspective so the chessboard image look again as if was taken directly from above.
I know that I can try to use 'findHomography' between matched points but I wanted to avoid it and use e.g. rotation data from mobile sensors to build homography matrix on my own. I calibrated my camera to get intrinsic parameters. Then lets say the following image has been taken at ~60degrees angle around x-axis. I thought that all I have to do is to multiply camera matrix with rotation matrix to obtain homography matrix. I tried to use the following code but looks like I'm not understanding something correctly because it doesn't work as expected (result image completely black or white.
import cv2
import numpy as np
import math
camera_matrix = np.array([[ 5.7415988502105745e+02, 0., 2.3986181527877352e+02],
[0., 5.7473682183375217e+02, 3.1723734404756237e+02],
[0., 0., 1.]])
distortion_coefficients = np.array([ 1.8662919398453856e-01, -7.9649812697463640e-01,
1.8178068172317731e-03, -2.4296638847737923e-03,
7.0519002388825025e-01 ])
theta = math.radians(60)
rotx = np.array([[1, 0, 0],
[0, math.cos(theta), -math.sin(theta)],
[0, math.sin(theta), math.cos(theta)]])
homography = np.dot(camera_matrix, rotx)
im = cv2.imread('data/chess1.jpg')
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
im_warped = cv2.warpPerspective(gray, homography, (480, 640), flags=cv2.WARP_INVERSE_MAP)
cv2.imshow('image', im_warped)
cv2.waitKey()
pass
I also have distortion_coefficients after calibration. How can those be incorporated into the code to improve results?
Upvotes: 5
Views: 4721
Reputation: 6162
This answer is awfully late by several years, but here it is ...
(Disclaimer: my use of terminology in this answer may be imprecise or incorrect. Please do look up on this topic from other more credible sources.)
Remember:
However,
OpenCV provides a getPerspectiveTransform
function which solves the 3x3 perspective matrix (using homogenous coordinate system) for a 2D homography between two planar quadrilaterals.
To use this function,
getPerspectiveTransform
to generate a 3x3 matrix that is able to dewarp your chessboard to an upright rectangle.Notes to remember:
Mind the ordering of the four corners.
The aspect ratio of the destination rectangle can be chosen arbitrarily. In fact, it is not possible to deduce the "original aspect ratio" of the object in world coordinates, because "this is 2D homography, not 3D".
Upvotes: 3
Reputation: 11785
You do not need to calibrate the camera nor estimate the camera orientation (the latter, however, in this case would be very easy: just find the vanishing points of those orthogonal bundles of lines, and take their cross product to find the normal to the plane, see Hartley & Zisserman's bible for details).
The only thing you need to do is estimate the homography that maps the checkers to squares, then apply it to the image.
Upvotes: 0
Reputation: 10329
One problem is that to multiply by a camera matrix you need some concept of a z coordinate. You should start by getting basic image warping given Euler angles to work before you think about distortion coefficients. Have a look at this answer for a slightly more detailed explanation and try to duplicate my result. The idea of moving your image down the z axis and then projecting it with your camera matrix can be confusing, let me know if any part of it does not make sense.
Upvotes: 1