Reputation: 1470
I'm looking to decrease density of tick labels on differing subplot
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from StringIO import StringIO
data = """\
a b c d
z 54.65 6.27 19.53 4.54
w -1.27 4.41 11.74 3.06
d 5.51 3.39 22.98 2.29
t 76284.53 -0.20 28394.93 0.28
"""
df = pd.read_csv(StringIO(data), sep='\s+')
gs = gridspec.GridSpec(3, 1,height_ratios=[1,1,4] )
ax0 = plt.subplot(gs[0])
ax1 = plt.subplot(gs[1])
ax2 = plt.subplot(gs[2])
df.plot(kind='bar', ax=ax0,color=('Blue','DeepSkyBlue','Red','DarkOrange'))
df.plot(kind='bar', ax=ax1,color=('Blue','DeepSkyBlue','Red','DarkOrange'))
df.plot(kind='bar', ax=ax2,color=('Blue','DeepSkyBlue','Red','DarkOrange'),rot=45)
ax0.set_ylim(69998, 78000)
ax1.set_ylim(19998, 29998)
ax2.set_ylim(-2, 28)
ax0.legend().set_visible(False)
ax1.legend().set_visible(False)
ax2.legend().set_visible(False)
ax0.spines['bottom'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax1.spines['top'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax0.xaxis.set_ticks_position('none')
ax1.xaxis.set_ticks_position('none')
ax0.xaxis.set_label_position('top')
ax1.xaxis.set_label_position('top')
ax0.tick_params(labeltop='off')
ax1.tick_params(labeltop='off', pad=15)
ax2.tick_params(pad=15)
ax2.xaxis.tick_bottom()
d = .015
kwargs = dict(transform=ax0.transAxes, color='k', clip_on=False)
ax0.plot((-d,+d),(-d,+d), **kwargs)
ax0.plot((1-d,1+d),(-d,+d), **kwargs)
kwargs.update(transform=ax1.transAxes)
ax1.plot((-d,+d),(1-d,1+d), **kwargs)
ax1.plot((1-d,1+d),(1-d,1+d), **kwargs)
ax1.plot((-d,+d),(-d,+d), **kwargs)
ax1.plot((1-d,1+d),(-d,+d), **kwargs)
kwargs.update(transform=ax2.transAxes)
ax1.plot((-d,+d),(1-d/4,1+d/4), **kwargs)
ax1.plot((1-d,1+d),(1-d/4,1+d/4), **kwargs)
plt.show()
which results in
I would like to decrease tick labels in the two upper subplots. How to do that ? Thanks.
Bonus: 1) how to get rid of the dotted line on y=0 at the basis of the bars? 2) how to get rid of x-trick label between subplot 0 and 1? 3) how to set the back of the plot to transparency? (see the right-bottom broken y-axis line that disappears behind the back of the plot)
Upvotes: 30
Views: 62945
Reputation: 380
In case you are using an array of x-axis values that is not numerical (for example dates), I would advise the following method:
import numpy as np
import matplotlib.pyplot as plt
distance_between_ticks = 10
reduced_xticks = x_arr[np.arange(0, len(x_arr), distance_between_ticks)]
fig, ax = plt.subplots()
# plot stuff
ax.set_xticks(reduced_xticks)
The numpy.arange
function will generate an array of equally spaced indexes that you then apply to your x-axis array.
Warning: the x_arr
array HAS to support such an indexing method (i.e. I would advise making sure that it is a numpy array).
Upvotes: 3
Reputation: 58895
A general approach is to tell matplotlib the desired number of ticks:
plt.locator_params(nbins=10)
Edit by comments from @Daniel Power: to change for a single axis (e.g. 'x'
) on an axis, use:
ax.locator_params(nbins=10, axis='x')
Upvotes: 59
Reputation: 2526
An improvement over the approach suggestion by Aman is the following:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
# ... plot some things ...
# Find at most 101 ticks on the y-axis at 'nice' locations
max_yticks = 100
yloc = plt.MaxNLocator(max_yticks)
ax.yaxis.set_major_locator(yloc)
plt.show()
Hope this helps.
Upvotes: 43
Reputation: 47189
You can set the ticks to where you want just like you set the xticks.
import numpy as np
ax0.yaxis.set_ticks(np.arange(70000,80000,2500))
This will create four ticks evenly spaced for your ax0 subplot. You can do something similar for your other subplots.
Upvotes: 22