Reputation: 7031
I'm searching for an elegant way to get data using attribute access on a dict with some nested dicts and lists (i.e. javascript-style object syntax).
For example:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
Should be accessible in this way:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
I think, this is not possible without recursion, but what would be a nice way to get an object style for dicts?
Upvotes: 690
Views: 504258
Reputation: 5471
You can leverage the json
module of the standard library with a custom object hook:
import json
class DictObject(object):
def __init__(self, dict_):
self.__dict__.update(dict_)
@classmethod
def from_dict(cls, d):
return json.loads(json.dumps(d), object_hook=DictObject)
Example usage:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ['hi', {'foo': 'bar'}]}
>>> o = DictObject.from_dict(d)
>>> o.a
1
>>> o.b.c
2
>>> o.d[0]
'hi'
>>> o.d[1].foo
'bar'
>>>
And it is not strictly read-only as it is with namedtuple
, i.e. you can change values – not structure:
>>> o.b.c = 3
>>> o.b.c
3
Upvotes: 41
Reputation: 51
The exact solution of the question can be achieved easily by PyPI package named attrdict. The interesting fact about this package is that the dict can be accessed either as keys or as attributes. Here is the solution -
from attrdict import AttrDict
d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
x = AttrDict(d)
print(x.a, x['a'])
print(x.b.c, x['b']['c'])
print(x.d[1].foo, x['d'][1]['foo'])
And output is as follows (obviously with no error) -
1 1
2 2
bar bar
N.B. It was first released in Feb 2, 2019 which means at the time of asking this question, this third party pypi package didn't exist. But if someone now wants to access dict value either by key or by attribute, this package surely can help as magic with only one line of code.
Upvotes: 0
Reputation: 4710
The following code from here, works on nested dictionaries and IDEs such as VS Code are able to hint the existing attributes:
class Struct:
def __init__(self, **kwargs):
for key, value in kwargs.items():
if isinstance(value, dict):
self.__dict__[key] = Struct(**value)
else:
self.__dict__[key] = value
my_dict = {
'name': 'bobbyhadz',
'address': {
'country': 'Country A',
'city': 'City A',
'codes': [1, 2, 3]
},
}
obj = Struct(**my_dict)
If you want to see how to load a YAML file and covert it to a Python object, see this gist.
Upvotes: 2
Reputation: 114943
class obj(object):
def __init__(self, d):
for k, v in d.items():
if isinstance(k, (list, tuple)):
setattr(self, k, [obj(x) if isinstance(x, dict) else x for x in v])
else:
setattr(self, k, obj(v) if isinstance(v, dict) else v)
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> x = obj(d)
>>> x.b.c
2
>>> x.d[1].foo
'bar'
Upvotes: 145
Reputation: 988
Taking what I feel are the best aspects of the previous examples, here's what I came up with:
class Struct:
"""The recursive class for building and representing objects with."""
def __init__(self, obj):
for k, v in obj.items():
if isinstance(v, dict):
setattr(self, k, Struct(v))
else:
setattr(self, k, v)
def __getitem__(self, val):
return self.__dict__[val]
def __repr__(self):
return '{%s}' % str(', '.join('%s : %s' % (k, repr(v)) for (k, v) in self.__dict__.items()))
Upvotes: 31
Reputation: 133
Looking for a simple wrapper class for dict
enabling attribute-style key access/assignment (dot notation) I was not satisfied with the existing options for the reasons below.
dataclasses
, pydantic
, etc. are great but require a static definition of the content. Also, they cannot replace dict
in code which relied on dict
since they don't share the same methods and __getitem__()
syntax is not supported.
Hence, I developed MetaDict. It behaves exactly like dict
but enables dot notation and IDE autocompletion (if the object is loaded in the RAM) without the shortcomings and potential namespace conflicts of other solutions. All features and usage examples can be found on GitHub (see link above).
Full disclosure: I am the author of MetaDict.
Shortcomings/limitations I encountered when trying out other solutions:
dict
objects are not converted to support attribute-style key accessDict
dataclass
)dict
objects when embedded in list
or other inbuilt iterableslist
objects to tuple
behind the scenesitems()
, update()
, etc. can be overwritten with obj.items = [1, 2, 3]
dict
objects when embedded in list
or other inbuilt iterablesdict
accepts all hashable objects as keysitems()
, update()
, etc. can be overwritten with obj.items = [1, 2, 3]
obj.pop('unknown_key', None)
raises an AttributeError
Note: I wrote a similar answer in this stackoverflow, which is related.
Upvotes: 2
Reputation: 337
You can use my way to handle it.
somedict= {"person": {"name": "daniel"}}
class convertor:
def __init__(self, dic: dict) -> object:
self.dict = dic
def recursive_check(obj):
for key, value in dic.items():
if isinstance(value, dict):
value= convertor(value)
setattr(obj, key, value)
recursive_check(self)
my_object= convertor(somedict)
print(my_object.person.name)
Upvotes: 1
Reputation: 26685
Surprisingly no one has mentioned Bunch. This library is exclusively meant to provide attribute style access to dict objects and does exactly what the OP wants. A demonstration:
>>> from bunch import bunchify
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> x = bunchify(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
'bar'
A Python 3 library is available at https://github.com/Infinidat/munch - Credit goes to codyzu
>>> from munch import DefaultMunch
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> obj = DefaultMunch.fromDict(d)
>>> obj.b.c
2
>>> obj.a
1
>>> obj.d[1].foo
'bar'
Upvotes: 192
Reputation: 184
class Dict2Obj:
def __init__(self, json_data):
self.convert(json_data)
def convert(self, json_data):
if not isinstance(json_data, dict):
return
for key in json_data:
if not isinstance(json_data[key], dict):
self.__dict__.update({key: json_data[key]})
else:
self.__dict__.update({ key: Dict2Obj(json_data[key])})
I could not find the implementation of nested dictionary to object, so wrote one.
Usage:
>>> json_data = {"a": {"b": 2}, "c": 3}
>>> out_obj = Dict2Obj(json_data)
>>> out_obj.a
<Dict2Obj object at 0x7f3dc22c2d68>
>>> out_obj.a.b
2
>>> out_obj.a.c
3
Upvotes: 2
Reputation: 731
In 2021, use pydantic BaseModel - will convert nested dicts and nested json objects to python objects and vice versa:
https://pydantic-docs.helpmanual.io/usage/models/
>>> class Foo(BaseModel):
... count: int
... size: float = None
...
>>>
>>> class Bar(BaseModel):
... apple = 'x'
... banana = 'y'
...
>>>
>>> class Spam(BaseModel):
... foo: Foo
... bars: List[Bar]
...
>>>
>>> m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])
Object to dict
>>> print(m.dict())
{'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}]}
Object to JSON
>>> print(m.json())
{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}
Dict to object
>>> spam = Spam.parse_obj({'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y2'}]})
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y2')])
JSON to object
>>> spam = Spam.parse_raw('{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}')
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')])
Upvotes: 16
Reputation: 811
# Applies to Python-3 Standard Library
class Struct(object):
def __init__(self, data):
for name, value in data.items():
setattr(self, name, self._wrap(value))
def _wrap(self, value):
if isinstance(value, (tuple, list, set, frozenset)):
return type(value)([self._wrap(v) for v in value])
else:
return Struct(value) if isinstance(value, dict) else value
# Applies to Python-2 Standard Library
class Struct(object):
def __init__(self, data):
for name, value in data.iteritems():
setattr(self, name, self._wrap(value))
def _wrap(self, value):
if isinstance(value, (tuple, list, set, frozenset)):
return type(value)([self._wrap(v) for v in value])
else:
return Struct(value) if isinstance(value, dict) else value
Can be used with any sequence/dict/value structure of any depth.
Upvotes: 71
Reputation: 954
Updated with recursive array expansion on @max-sirwa 's code
class Objectify:
def __init__(self, **kwargs):
for key, value in kwargs.items():
if isinstance(value, dict):
f = Objectify(**value)
self.__dict__.update({key: f})
elif isinstance(value, list):
t = []
for i in value:
t.append(Objectify(**i)) if isinstance(i, dict) else t.append(i)
self.__dict__.update({key: t})
else:
self.__dict__.update({key: value})
Upvotes: 0
Reputation: 151
Building on what was done earlier by the accepted answer, if you would like to have it recursive.
class FullStruct:
def __init__(self, **kwargs):
for key, value in kwargs.items():
if isinstance(value, dict):
f = FullStruct(**value)
self.__dict__.update({key: f})
else:
self.__dict__.update({key: value})
Upvotes: 1
Reputation: 145398
The simplest way would be using collections.namedtuple
.
I find the following 4-liner the most beautiful, which supports nested dictionaries:
def dict_to_namedtuple(typename, data):
return namedtuple(typename, data.keys())(
*(dict_to_namedtuple(typename + '_' + k, v) if isinstance(v, dict) else v for k, v in data.items())
)
The output will look good as well:
>>> nt = dict_to_namedtuple('config', {
... 'path': '/app',
... 'debug': {'level': 'error', 'stream': 'stdout'}
... })
>>> print(nt)
config(path='/app', debug=config_debug(level='error', stream='stdout'))
>>> print(nt.debug.level)
'error'
Upvotes: 8
Reputation: 8195
I wasn't satisfied with the marked and upvoted answers, so here is a simple and general solution for transforming JSON-style nested datastructures (made of dicts and lists) into hierachies of plain objects:
# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union
class DataObject:
def __repr__(self):
return str({k: v for k, v in vars(self).items()})
def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
"""
Example
-------
>>> data = {
... "name": "Bob Howard",
... "positions": [{"department": "ER", "manager_id": 13}],
... }
... data_to_object(data).positions[0].manager_id
13
"""
if isinstance(data, abc.Mapping):
r = DataObject()
for k, v in data.items():
if type(v) is dict or type(v) is list:
setattr(r, k, data_to_object(v))
else:
setattr(r, k, v)
return r
elif isinstance(data, abc.Iterable):
return [data_to_object(e) for e in data]
else:
return data
Upvotes: 1
Reputation: 760
Typically you want to mirror dict hierarchy into your object but not list or tuples which are typically at lowest level. So this is how I did this:
class defDictToObject(object):
def __init__(self, myDict):
for key, value in myDict.items():
if type(value) == dict:
setattr(self, key, defDictToObject(value))
else:
setattr(self, key, value)
So we do:
myDict = { 'a': 1,
'b': {
'b1': {'x': 1,
'y': 2} },
'c': ['hi', 'bar']
}
and get:
x.b.b1.x
1
x.c
['hi', 'bar']
Upvotes: 9
Reputation: 99
Convert dict
to object
from types import SimpleNamespace
def dict2obj(data):
"""将字典对象转换为可访问的对象属性"""
if not isinstance(data, dict):
raise ValueError('data must be dict object.')
def _d2o(d):
_d = {}
for key, item in d.items():
if isinstance(item, dict):
_d[key] = _d2o(item)
else:
_d[key] = item
return SimpleNamespace(**_d)
return _d2o(data)
Upvotes: 2
Reputation: 1129
There's a
collection helper called namedtuple
, that can do this for you:
from collections import namedtuple
d_named = namedtuple('Struct', d.keys())(*d.values())
In [7]: d_named
Out[7]: Struct(a=1, b={'c': 2}, d=['hi', {'foo': 'bar'}])
In [8]: d_named.a
Out[8]: 1
Upvotes: 59
Reputation:
I know there's already a lot of answers here already and I'm late to the party but this method will recursively and 'in place' convert a dictionary to an object-like structure... Works in 3.x.x
def dictToObject(d):
for k,v in d.items():
if isinstance(v, dict):
d[k] = dictToObject(v)
return namedtuple('object', d.keys())(*d.values())
# Dictionary created from JSON file
d = {
'primaryKey': 'id',
'metadata':
{
'rows': 0,
'lastID': 0
},
'columns':
{
'col2': {
'dataType': 'string',
'name': 'addressLine1'
},
'col1': {
'datatype': 'string',
'name': 'postcode'
},
'col3': {
'dataType': 'string',
'name': 'addressLine2'
},
'col0': {
'datatype': 'integer',
'name': 'id'
},
'col4': {
'dataType': 'string',
'name': 'contactNumber'
}
},
'secondaryKeys': {}
}
d1 = dictToObject(d)
d1.columns.col1 # == object(datatype='string', name='postcode')
d1.metadata.rows # == 0
Upvotes: 8
Reputation: 15233
This also works well too
class DObj(object):
pass
dobj = Dobj()
dobj.__dict__ = {'a': 'aaa', 'b': 'bbb'}
print dobj.a
>>> aaa
print dobj.b
>>> bbb
Upvotes: 6
Reputation: 2217
I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way too slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.
class DictProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
def __getattr__(self, key):
try:
return wrap(getattr(self.obj, key))
except AttributeError:
try:
return self[key]
except KeyError:
raise AttributeError(key)
# you probably also want to proxy important list properties along like
# items(), iteritems() and __len__
class ListProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
# you probably also want to proxy important list properties along like
# __iter__ and __len__
def wrap(value):
if isinstance(value, dict):
return DictProxy(value)
if isinstance(value, (tuple, list)):
return ListProxy(value)
return value
See the original implementation here by https://stackoverflow.com/users/704327/michael-merickel.
The other thing to note, is that this implementation is pretty simple and doesn't implement all of the methods you might need. You'll need to write those as required on the DictProxy or ListProxy objects.
Upvotes: 24
Reputation: 273456
Update: In Python 2.6 and onwards, consider whether the namedtuple
data structure suits your needs:
>>> from collections import namedtuple
>>> MyStruct = namedtuple('MyStruct', 'a b d')
>>> s = MyStruct(a=1, b={'c': 2}, d=['hi'])
>>> s
MyStruct(a=1, b={'c': 2}, d=['hi'])
>>> s.a
1
>>> s.b
{'c': 2}
>>> s.c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyStruct' object has no attribute 'c'
>>> s.d
['hi']
The alternative (original answer contents) is:
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
Then, you can use:
>>> args = {'a': 1, 'b': 2}
>>> s = Struct(**args)
>>> s
<__main__.Struct instance at 0x01D6A738>
>>> s.a
1
>>> s.b
2
Upvotes: 751
Reputation: 19259
What about just assigning your dict
to the __dict__
of an empty object?
class Object:
"""If your dict is "flat", this is a simple way to create an object from a dict
>>> obj = Object()
>>> obj.__dict__ = d
>>> d.a
1
"""
pass
Of course this fails on your nested dict example unless you walk the dict recursively:
# For a nested dict, you need to recursively update __dict__
def dict2obj(d):
"""Convert a dict to an object
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> obj = dict2obj(d)
>>> obj.b.c
2
>>> obj.d
["hi", {'foo': "bar"}]
"""
try:
d = dict(d)
except (TypeError, ValueError):
return d
obj = Object()
for k, v in d.iteritems():
obj.__dict__[k] = dict2obj(v)
return obj
And your example list element was probably meant to be a Mapping
, a list of (key, value) pairs like this:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': [("hi", {'foo': "bar"})]}
>>> obj = dict2obj(d)
>>> obj.d.hi.foo
"bar"
Upvotes: 3
Reputation: 5162
Here is a nested-ready version with namedtuple:
from collections import namedtuple
class Struct(object):
def __new__(cls, data):
if isinstance(data, dict):
return namedtuple(
'Struct', data.iterkeys()
)(
*(Struct(val) for val in data.values())
)
elif isinstance(data, (tuple, list, set, frozenset)):
return type(data)(Struct(_) for _ in data)
else:
return data
=>
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> s = Struct(d)
>>> s.d
['hi', Struct(foo='bar')]
>>> s.d[0]
'hi'
>>> s.d[1].foo
'bar'
Upvotes: 1
Reputation: 544
This little class never gives me any problem, just extend it and use the copy() method:
import simplejson as json
class BlindCopy(object):
def copy(self, json_str):
dic = json.loads(json_str)
for k, v in dic.iteritems():
if hasattr(self, k):
setattr(self, k, v);
Upvotes: 0
Reputation: 4166
Building off my answer to "python: How to add property to a class dynamically?":
class data(object):
def __init__(self,*args,**argd):
self.__dict__.update(dict(*args,**argd))
def makedata(d):
d2 = {}
for n in d:
d2[n] = trydata(d[n])
return data(d2)
def trydata(o):
if isinstance(o,dict):
return makedata(o)
elif isinstance(o,list):
return [trydata(i) for i in o]
else:
return o
You call makedata
on the dictionary you want converted, or maybe trydata
depending on what you expect as input, and it spits out a data object.
Notes:
trydata
if you need more functionality.x.a = {}
or similar.Upvotes: 2
Reputation: 201
If you want to access dict keys as an object (or as a dict for difficult keys), do it recursively, and also be able to update the original dict, you could do:
class Dictate(object):
"""Object view of a dict, updating the passed in dict when values are set
or deleted. "Dictate" the contents of a dict...: """
def __init__(self, d):
# since __setattr__ is overridden, self.__dict = d doesn't work
object.__setattr__(self, '_Dictate__dict', d)
# Dictionary-like access / updates
def __getitem__(self, name):
value = self.__dict[name]
if isinstance(value, dict): # recursively view sub-dicts as objects
value = Dictate(value)
return value
def __setitem__(self, name, value):
self.__dict[name] = value
def __delitem__(self, name):
del self.__dict[name]
# Object-like access / updates
def __getattr__(self, name):
return self[name]
def __setattr__(self, name, value):
self[name] = value
def __delattr__(self, name):
del self[name]
def __repr__(self):
return "%s(%r)" % (type(self).__name__, self.__dict)
def __str__(self):
return str(self.__dict)
Example usage:
d = {'a': 'b', 1: 2}
dd = Dictate(d)
assert dd.a == 'b' # Access like an object
assert dd[1] == 2 # Access like a dict
# Updates affect d
dd.c = 'd'
assert d['c'] == 'd'
del dd.a
del dd[1]
# Inner dicts are mapped
dd.e = {}
dd.e.f = 'g'
assert dd['e'].f == 'g'
assert d == {'c': 'd', 'e': {'f': 'g'}}
Upvotes: 20
Reputation: 2544
I think a dict consists of number, string and dict is enough most time. So I ignore the situation that tuples, lists and other types not appearing in the final dimension of a dict.
Considering inheritance, combined with recursion, it solves the print problem conveniently and also provides two ways to query a data,one way to edit a data.
See the example below, a dict that describes some information about students:
group=["class1","class2","class3","class4",]
rank=["rank1","rank2","rank3","rank4","rank5",]
data=["name","sex","height","weight","score"]
#build a dict based on the lists above
student_dic=dict([(g,dict([(r,dict([(d,'') for d in data])) for r in rank ]))for g in group])
#this is the solution
class dic2class(dict):
def __init__(self, dic):
for key,val in dic.items():
self.__dict__[key]=self[key]=dic2class(val) if isinstance(val,dict) else val
student_class=dic2class(student_dic)
#one way to edit:
student_class.class1.rank1['sex']='male'
student_class.class1.rank1['name']='Nan Xiang'
#two ways to query:
print student_class.class1.rank1
print student_class.class1['rank1']
print '-'*50
for rank in student_class.class1:
print getattr(student_class.class1,rank)
Results:
{'score': '', 'sex': 'male', 'name': 'Nan Xiang', 'weight': '', 'height': ''}
{'score': '', 'sex': 'male', 'name': 'Nan Xiang', 'weight': '', 'height': ''}
--------------------------------------------------
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
{'score': '', 'sex': 'male', 'name': 'Nan Xiang', 'weight': '', 'height': ''}
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
Upvotes: 2
Reputation: 31
This is another, alternative, way to convert a list of dictionaries to an object:
def dict2object(in_dict):
class Struct(object):
def __init__(self, in_dict):
for key, value in in_dict.items():
if isinstance(value, (list, tuple)):
setattr(
self, key,
[Struct(sub_dict) if isinstance(sub_dict, dict)
else sub_dict for sub_dict in value])
else:
setattr(
self, key,
Struct(value) if isinstance(value, dict)
else value)
return [Struct(sub_dict) for sub_dict in in_dict] \
if isinstance(in_dict, list) else Struct(in_dict)
Upvotes: 0
Reputation: 371
from mock import Mock
d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
my_data = Mock(**d)
# We got
# my_data.a == 1
Upvotes: 6