Reputation: 17136
How do you measure the memory usage of an application or process in Linux?
From the blog article of Understanding memory usage on Linux, ps
is not an accurate tool to use for this intent.
Why
ps
is "wrong"Depending on how you look at it,
ps
is not reporting the real memory usage of processes. What it is really doing is showing how much real memory each process would take up if it were the only process running. Of course, a typical Linux machine has several dozen processes running at any given time, which means that the VSZ and RSS numbers reported byps
are almost definitely wrong.
(Note: This question is covered here in great detail.)
Upvotes: 928
Views: 1598556
Reputation: 3569
Try the pmap command:
sudo pmap -x <process pid>
It would breakdown the memory allocated by process and shared libraries
Eg: sudo pmap -x <vscode cpptools>
Address Kbytes RSS Dirty Mode Mapping
0000000000400000 12444 4152 0 r-x-- cpptools-srv
0000000001027000 36 36 8 r---- cpptools-srv
0000000001030000 368 36 12 rw--- cpptools-srv
000000000108c000 4240 2120 2120 rw--- [ anon ]
0000000001e09000 4 0 0 ----- [ anon ]
0000000001e0a000 8 8 8 rw--- [ anon ]
00007fa3cddad000 48 44 44 rw--- [ anon ]
For more details, uses X
switch
Example: sudo pmap -X <vscode cpptools>
Address Perm Offset Device Inode Size Rss Pss Referenced Anonymous LazyFree ShmemPmdMapped FilePmdMapped Shared_Hugetlb Private_Hugetlb Swap SwapPss Locked THPeligible Mapping
00400000 r-xp 00000000 08:20 898178 12444 4152 345 4152 0 0 0 0 0 0 0 0 0 0 cpptools-srv
01027000 r--p 00c26000 08:20 898178 36 36 10 36 8 0 0 0 0 0 0 0 0 0 cpptools-srv
01030000 rw-p 00c2f000 08:20 898178 368 36 13 36 12 0 0 0 0 0 0 0 0 0 cpptools-srv
0108c000 rw-p 00000000 00:00 0 4240 2120 2120 2084 2120 0 0 0 0 0 0 0 0 1
01e09000 ---p 00000000 00:00 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 [heap]
01e0a000 rw-p 00000000 00:00 0 8 8 8 8 8 0 0 0 0 0 0 0 0 0 [heap]
7fa3cddad000 rw-p 00000000 00:00 0 48 44 44 24 44 0 0 0 0 0 0 0 0 0
7fa3cddba000 rw-p 00000000 00:00 0 12 8 8 8 8 0 0 0 0 0 0 0 0 0
7fa3cddbe000 rw-p 00000000 00:00 0 4 4 4 4 4 0 0 0 0 0 0 0 0 0
Upvotes: 356
Reputation: 2013
I found heaptrack much easier to use than valgrind.
sudo apt install heaptrack heaptrack_gui
heaptrack my-program args
heaptrack_gui *.zst
Upvotes: 1
Reputation: 52377
With ps
or similar tools you will only get the amount of memory pages allocated by that process. This number is correct, but:
does not reflect the actual amount of memory used by the application, only the amount of memory reserved for it
can be misleading if pages are shared, for example by several threads or by using dynamically linked libraries
If you really want to know what amount of memory your application actually uses, you need to run it within a profiler. For example, Valgrind can give you insights about the amount of memory used, and, more importantly, about possible memory leaks in your program. The heap profiler tool of Valgrind is called 'massif':
Massif is a heap profiler. It performs detailed heap profiling by taking regular snapshots of a program's heap. It produces a graph showing heap usage over time, including information about which parts of the program are responsible for the most memory allocations. The graph is supplemented by a text or HTML file that includes more information for determining where the most memory is being allocated. Massif runs programs about 20x slower than normal.
As explained in the Valgrind documentation, you need to run the program through Valgrind:
valgrind --tool=massif <executable> <arguments>
Massif writes a dump of memory usage snapshots (e.g. massif.out.12345
). These provide, (1) a timeline of memory usage, (2) for each snapshot, a record of where in your program memory was allocated. A great graphical tool for analyzing these files is massif-visualizer. But I found ms_print
, a simple text-based tool shipped with Valgrind, to be of great help already.
To find memory leaks, use the (default) memcheck
tool of valgrind.
Newer tools I did not try myself are HeapTrack and the heap profiler in gperftools.
Upvotes: 449
Reputation: 216
Given some of the answers (thanks thomasrutter), to get the actual swap and RAM for a single application, I came up with the following, say we want to know what 'firefox' is using
sudo smem | awk '/firefox/{swap += $5; pss += $7;} END {print "swap = "swap/1024" PSS = "pss/1024}'
Or for libvirt;
sudo smem | awk '/libvirt/{swap += $5; pss += $7;} END {print "swap = "swap/1024" PSS = "pss/1024}'
This will give you the total in MB like so;
swap = 0 PSS = 2096.92
swap = 224.75 PSS = 421.455
Tested on ubuntu 16.04 through 20.04.
Upvotes: 3
Reputation: 2275
ps -eo size,pid,user,command --sort -size | \
awk '{ hr=$1/1024 ; printf("%13.2f Mb ",hr) } { for ( x=4 ; x<=NF ; x++ ) { printf("%s ",$x) } print "" }' |\
cut -d "" -f2 | cut -d "-" -f1
Use this as root and you can get a clear output for memory usage by each process.
0.00 Mb COMMAND
1288.57 Mb /usr/lib/firefox
821.68 Mb /usr/lib/chromium/chromium
762.82 Mb /usr/lib/chromium/chromium
588.36 Mb /usr/sbin/mysqld
547.55 Mb /usr/lib/chromium/chromium
523.92 Mb /usr/lib/tracker/tracker
476.59 Mb /usr/lib/chromium/chromium
446.41 Mb /usr/bin/gnome
421.62 Mb /usr/sbin/libvirtd
405.11 Mb /usr/lib/chromium/chromium
302.60 Mb /usr/lib/chromium/chromium
291.46 Mb /usr/lib/chromium/chromium
284.56 Mb /usr/lib/chromium/chromium
238.93 Mb /usr/lib/tracker/tracker
223.21 Mb /usr/lib/chromium/chromium
197.99 Mb /usr/lib/chromium/chromium
194.07 Mb conky
191.92 Mb /usr/lib/chromium/chromium
190.72 Mb /usr/bin/mongod
169.06 Mb /usr/lib/chromium/chromium
155.11 Mb /usr/bin/gnome
136.02 Mb /usr/lib/chromium/chromium
125.98 Mb /usr/lib/chromium/chromium
103.98 Mb /usr/lib/chromium/chromium
93.22 Mb /usr/lib/tracker/tracker
89.21 Mb /usr/lib/gnome
80.61 Mb /usr/bin/gnome
77.73 Mb /usr/lib/evolution/evolution
76.09 Mb /usr/lib/evolution/evolution
72.21 Mb /usr/lib/gnome
69.40 Mb /usr/lib/evolution/evolution
68.84 Mb nautilus
68.08 Mb zeitgeist
60.97 Mb /usr/lib/tracker/tracker
59.65 Mb /usr/lib/evolution/evolution
57.68 Mb apt
55.23 Mb /usr/lib/gnome
53.61 Mb /usr/lib/evolution/evolution
53.07 Mb /usr/lib/gnome
52.83 Mb /usr/lib/gnome
51.02 Mb /usr/lib/udisks2/udisksd
50.77 Mb /usr/lib/evolution/evolution
50.53 Mb /usr/lib/gnome
50.45 Mb /usr/lib/gvfs/gvfs
50.36 Mb /usr/lib/packagekit/packagekitd
50.14 Mb /usr/lib/gvfs/gvfs
48.95 Mb /usr/bin/Xwayland :1024
46.21 Mb /usr/bin/gnome
42.43 Mb /usr/bin/zeitgeist
42.29 Mb /usr/lib/gnome
41.97 Mb /usr/lib/gnome
41.64 Mb /usr/lib/gvfs/gvfsd
41.63 Mb /usr/lib/gvfs/gvfsd
41.55 Mb /usr/lib/gvfs/gvfsd
41.48 Mb /usr/lib/gvfs/gvfsd
39.87 Mb /usr/bin/python /usr/bin/chrome
37.45 Mb /usr/lib/xorg/Xorg vt2
36.62 Mb /usr/sbin/NetworkManager
35.63 Mb /usr/lib/caribou/caribou
34.79 Mb /usr/lib/tracker/tracker
33.88 Mb /usr/sbin/ModemManager
33.77 Mb /usr/lib/gnome
33.61 Mb /usr/lib/upower/upowerd
33.53 Mb /usr/sbin/gdm3
33.37 Mb /usr/lib/gvfs/gvfsd
33.36 Mb /usr/lib/gvfs/gvfs
33.23 Mb /usr/lib/gvfs/gvfs
33.15 Mb /usr/lib/at
33.15 Mb /usr/lib/at
30.03 Mb /usr/lib/colord/colord
29.62 Mb /usr/lib/apt/methods/https
28.06 Mb /usr/lib/zeitgeist/zeitgeist
27.29 Mb /usr/lib/policykit
25.55 Mb /usr/lib/gvfs/gvfs
25.55 Mb /usr/lib/gvfs/gvfs
25.23 Mb /usr/lib/accountsservice/accounts
25.18 Mb /usr/lib/gvfs/gvfsd
25.15 Mb /usr/lib/gvfs/gvfs
25.15 Mb /usr/lib/gvfs/gvfs
25.12 Mb /usr/lib/gvfs/gvfs
25.10 Mb /usr/lib/gnome
25.10 Mb /usr/lib/gnome
25.07 Mb /usr/lib/gvfs/gvfsd
24.99 Mb /usr/lib/gvfs/gvfs
23.26 Mb /usr/lib/chromium/chromium
22.09 Mb /usr/bin/pulseaudio
19.01 Mb /usr/bin/pulseaudio
18.62 Mb (sd
18.46 Mb (sd
18.30 Mb /sbin/init
18.17 Mb /usr/sbin/rsyslogd
17.50 Mb gdm
17.42 Mb gdm
17.09 Mb /usr/lib/dconf/dconf
17.09 Mb /usr/lib/at
17.06 Mb /usr/lib/gvfs/gvfsd
16.98 Mb /usr/lib/at
16.91 Mb /usr/lib/gdm3/gdm
16.86 Mb /usr/lib/gvfs/gvfsd
16.86 Mb /usr/lib/gdm3/gdm
16.85 Mb /usr/lib/dconf/dconf
16.85 Mb /usr/lib/dconf/dconf
16.73 Mb /usr/lib/rtkit/rtkit
16.69 Mb /lib/systemd/systemd
13.13 Mb /usr/lib/chromium/chromium
13.13 Mb /usr/lib/chromium/chromium
10.92 Mb anydesk
8.54 Mb /sbin/lvmetad
7.43 Mb /usr/sbin/apache2
6.82 Mb /usr/sbin/apache2
6.77 Mb /usr/sbin/apache2
6.73 Mb /usr/sbin/apache2
6.66 Mb /usr/sbin/apache2
6.64 Mb /usr/sbin/apache2
6.63 Mb /usr/sbin/apache2
6.62 Mb /usr/sbin/apache2
6.51 Mb /usr/sbin/apache2
6.25 Mb /usr/sbin/apache2
6.22 Mb /usr/sbin/apache2
3.92 Mb bash
3.14 Mb bash
2.97 Mb bash
2.95 Mb bash
2.93 Mb bash
2.91 Mb bash
2.86 Mb bash
2.86 Mb bash
2.86 Mb bash
2.84 Mb bash
2.84 Mb bash
2.45 Mb /lib/systemd/systemd
2.30 Mb (sd
2.28 Mb /usr/bin/dbus
1.84 Mb /usr/bin/dbus
1.46 Mb ps
1.21 Mb openvpn hackthebox.ovpn
1.16 Mb /sbin/dhclient
1.16 Mb /sbin/dhclient
1.09 Mb /lib/systemd/systemd
0.98 Mb /sbin/mount.ntfs /dev/sda3 /media/n0bit4/Data
0.97 Mb /lib/systemd/systemd
0.96 Mb /lib/systemd/systemd
0.89 Mb /usr/sbin/smartd
0.77 Mb /usr/bin/dbus
0.76 Mb su
0.76 Mb su
0.76 Mb su
0.76 Mb su
0.76 Mb su
0.76 Mb su
0.75 Mb sudo su
0.75 Mb sudo su
0.75 Mb sudo su
0.75 Mb sudo su
0.75 Mb sudo su
0.75 Mb sudo su
0.74 Mb /usr/bin/dbus
0.71 Mb /usr/lib/apt/methods/http
0.68 Mb /bin/bash /usr/bin/mysqld_safe
0.68 Mb /sbin/wpa_supplicant
0.66 Mb /usr/bin/dbus
0.61 Mb /lib/systemd/systemd
0.54 Mb /usr/bin/dbus
0.46 Mb /usr/sbin/cron
0.45 Mb /usr/sbin/irqbalance
0.43 Mb logger
0.41 Mb awk { hr=$1/1024 ; printf("%13.2f Mb ",hr) } { for ( x=4 ; x<=NF ; x++ ) { printf("%s ",$x) } print "" }
0.40 Mb /usr/bin/ssh
0.34 Mb /usr/lib/chromium/chrome
0.32 Mb cut
0.32 Mb cut
0.00 Mb [kthreadd]
0.00 Mb [ksoftirqd/0]
0.00 Mb [kworker/0:0H]
0.00 Mb [rcu_sched]
0.00 Mb [rcu_bh]
0.00 Mb [migration/0]
0.00 Mb [lru
0.00 Mb [watchdog/0]
0.00 Mb [cpuhp/0]
0.00 Mb [cpuhp/1]
0.00 Mb [watchdog/1]
0.00 Mb [migration/1]
0.00 Mb [ksoftirqd/1]
0.00 Mb [kworker/1:0H]
0.00 Mb [cpuhp/2]
0.00 Mb [watchdog/2]
0.00 Mb [migration/2]
0.00 Mb [ksoftirqd/2]
0.00 Mb [kworker/2:0H]
0.00 Mb [cpuhp/3]
0.00 Mb [watchdog/3]
0.00 Mb [migration/3]
0.00 Mb [ksoftirqd/3]
0.00 Mb [kworker/3:0H]
0.00 Mb [kdevtmpfs]
0.00 Mb [netns]
0.00 Mb [khungtaskd]
0.00 Mb [oom_reaper]
0.00 Mb [writeback]
0.00 Mb [kcompactd0]
0.00 Mb [ksmd]
0.00 Mb [khugepaged]
0.00 Mb [crypto]
0.00 Mb [kintegrityd]
0.00 Mb [bioset]
0.00 Mb [kblockd]
0.00 Mb [devfreq_wq]
0.00 Mb [watchdogd]
0.00 Mb [kswapd0]
0.00 Mb [vmstat]
0.00 Mb [kthrotld]
0.00 Mb [ipv6_addrconf]
0.00 Mb [acpi_thermal_pm]
0.00 Mb [ata_sff]
0.00 Mb [scsi_eh_0]
0.00 Mb [scsi_tmf_0]
0.00 Mb [scsi_eh_1]
0.00 Mb [scsi_tmf_1]
0.00 Mb [scsi_eh_2]
0.00 Mb [scsi_tmf_2]
0.00 Mb [scsi_eh_3]
0.00 Mb [scsi_tmf_3]
0.00 Mb [scsi_eh_4]
0.00 Mb [scsi_tmf_4]
0.00 Mb [scsi_eh_5]
0.00 Mb [scsi_tmf_5]
0.00 Mb [bioset]
0.00 Mb [kworker/1:1H]
0.00 Mb [kworker/3:1H]
0.00 Mb [kworker/0:1H]
0.00 Mb [kdmflush]
0.00 Mb [bioset]
0.00 Mb [kdmflush]
0.00 Mb [bioset]
0.00 Mb [jbd2/sda5
0.00 Mb [ext4
0.00 Mb [kworker/2:1H]
0.00 Mb [kauditd]
0.00 Mb [bioset]
0.00 Mb [drbd
0.00 Mb [irq/27
0.00 Mb [i915/signal:0]
0.00 Mb [i915/signal:1]
0.00 Mb [i915/signal:2]
0.00 Mb [ttm_swap]
0.00 Mb [cfg80211]
0.00 Mb [kworker/u17:0]
0.00 Mb [hci0]
0.00 Mb [hci0]
0.00 Mb [kworker/u17:1]
0.00 Mb [iprt
0.00 Mb [iprt
0.00 Mb [kworker/1:0]
0.00 Mb [kworker/3:0]
0.00 Mb [kworker/0:0]
0.00 Mb [kworker/2:0]
0.00 Mb [kworker/u16:0]
0.00 Mb [kworker/u16:2]
0.00 Mb [kworker/3:2]
0.00 Mb [kworker/2:1]
0.00 Mb [kworker/1:2]
0.00 Mb [kworker/0:2]
0.00 Mb [kworker/2:2]
0.00 Mb [kworker/0:1]
0.00 Mb [scsi_eh_6]
0.00 Mb [scsi_tmf_6]
0.00 Mb [usb
0.00 Mb [bioset]
0.00 Mb [kworker/3:1]
0.00 Mb [kworker/u16:1]
Upvotes: 195
Reputation: 169
/prox/xxx/numa_maps gives some info there: N0=??? N1=???. But this result might be lower than the actual result, as it only counts those which have been touched.
Upvotes: 0
Reputation: 506
Based on an answer to a related question.
You may use SNMP to get the memory and CPU usage of a process in a particular device on the network :)
snmp
installed and runningsnmp
should be configured to accept requests from where you will run the script below (it may be configured in file snmpd.conf)HOST-RESOURCES-MIB::hrSWRunPerfCPU is the number of centi-seconds of the total system's CPU resources consumed by this process. Note that on a multi-processor system, this value may increment by more than one centi-second in one centi-second of real (wall clock) time.
HOST-RESOURCES-MIB::hrSWRunPerfMem is the total amount of real system memory allocated to this process.
echo "IP address: "
read ip
echo "Specfiy PID: "
read pid
echo "Interval in seconds: "
read interval
while [ 1 ]
do
date
snmpget -v2c -c public $ip HOST-RESOURCES-MIB::hrSWRunPerfCPU.$pid
snmpget -v2c -c public $ip HOST-RESOURCES-MIB::hrSWRunPerfMem.$pid
sleep $interval;
done
Upvotes: 0
Reputation: 750
I am using Arch Linux and there's this wonderful package called ps_mem
:
ps_mem -p <pid>
$ ps_mem -S -p $(pgrep firefox)
Private + Shared = RAM used Swap used Program
355.0 MiB + 38.7 MiB = 393.7 MiB 35.9 MiB firefox
---------------------------------------------
393.7 MiB 35.9 MiB
=============================================
Upvotes: 29
Reputation: 1562
Use time
.
Not the Bash builtin time
, but the one you can find with which time
, for example /usr/bin/time
.
Here's what it covers, on a simple ls
:
$ /usr/bin/time --verbose ls
(...)
Command being timed: "ls"
User time (seconds): 0.00
System time (seconds): 0.00
Percent of CPU this job got: 0%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.00
Average shared text size (kbytes): 0
Average unshared data size (kbytes): 0
Average stack size (kbytes): 0
Average total size (kbytes): 0
Maximum resident set size (kbytes): 2372
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 1
Minor (reclaiming a frame) page faults: 121
Voluntary context switches: 2
Involuntary context switches: 9
Swaps: 0
File system inputs: 256
File system outputs: 0
Socket messages sent: 0
Socket messages received: 0
Signals delivered: 0
Page size (bytes): 4096
Exit status: 0
Upvotes: 107
Reputation: 2953
Beside the solutions listed in the answers, you can use the Linux command "top". It provides a dynamic real-time view of the running system, and it gives the CPU and memory usage for the whole system, along with for every program, in percentage:
top
to filter by a program PID:
top -p <PID>
To filter by a program name:
top | grep <PROCESS NAME>
"top" provides also some fields such as:
VIRT -- Virtual Image (kb): The total amount of virtual memory used by the task
RES -- Resident size (kb): The non-swapped physical memory a task has used ; RES = CODE + DATA.
DATA -- Data+Stack size (kb): The amount of physical memory devoted to other than executable code, also known as the 'data resident set' size or DRS.
SHR -- Shared Mem size (kb): The amount of shared memory used by a task. It simply reflects memory that could be potentially shared with other processes.
Reference here.
Upvotes: 47
Reputation: 508
Use the in-built System Monitor GUI tool available in Ubuntu.
Upvotes: -2
Reputation: 7385
While this question seems to be about examining currently running processes, I wanted to see the peak memory used by an application from start to finish. Besides Valgrind, you can use tstime, which is much simpler. It measures the "highwater" memory usage (RSS and virtual). From this answer.
Upvotes: 2
Reputation: 3654
Note: this works 100% well only when memory consumption increases
If you want to monitor memory usage by given process (or group of processed sharing common name, e.g. google-chrome
, you can use my bash-script:
while true; do ps aux | awk ‚{print $5, $11}’ | grep chrome | sort -n > /tmp/a.txt; sleep 1; diff /tmp/{b,a}.txt; mv /tmp/{a,b}.txt; done;
this will continuously look for changes and print them.
Upvotes: 7
Reputation: 585
Check out this shell script to check memory usage by application in Linux.
It is also available on GitHub and in a version without paste and bc.
Upvotes: 3
Reputation: 61
If the process is not using up too much memory (either because you expect this to be the case, or some other command has given this initial indication), and the process can withstand being stopped for a short period of time, you can try to use the gcore command.
gcore <pid>
Check the size of the generated core file to get a good idea how much memory a particular process is using.
This won't work too well if process is using hundreds of megabytes, or gigabytes, as the core generation could take several seconds or minutes to be created depending on I/O performance. During the core creation the process is stopped (or "frozen") to prevent memory changes. So be careful.
Also make sure the mount point where the core is generated has plenty of disk space and that the system will not react negatively to the core file being created in that particular directory.
Upvotes: 6
Reputation: 61
The below command line will give you the total memory used by the various process running on the Linux machine in MB:
ps -eo size,pid,user,command --sort -size | awk '{ hr=$1/1024 ; printf("%13.2f Mb ",hr) } { for ( x=4 ; x<=NF ; x++ ) { printf("%s ",$x) } print "" }' | awk '{total=total + $1} END {print total}'
Upvotes: 6
Reputation: 117401
Use smem, which is an alternative to ps which calculates the USS and PSS per process. You probably want the PSS.
USS - Unique Set Size. This is the amount of unshared memory unique to that process (think of it as U for unique memory). It does not include shared memory. Thus this will under-report the amount of memory a process uses, but it is helpful when you want to ignore shared memory.
PSS - Proportional Set Size. This is what you want. It adds together the unique memory (USS), along with a proportion of its shared memory divided by the number of processes sharing that memory. Thus it will give you an accurate representation of how much actual physical memory is being used per process - with shared memory truly represented as shared. Think of the P being for physical memory.
How this compares to RSS as reported by ps and other utilities:
Notice: smem can also (optionally) output graphs such as pie charts and the like. IMO you don't need any of that. If you just want to use it from the command line like you might use ps -A v
, then you don't need to install the Python and Matplotlib recommended dependency.
Upvotes: 155
Reputation: 3907
I'm using htop; it's a very good console program similar to Windows Task Manager.
Upvotes: 8
Reputation: 85
A good test of the more "real world" usage is to open the application, run vmstat -s
, and check the "active memory" statistic. Close the application, wait a few seconds, and run vmstat -s
again.
However much active memory was freed was in evidently in use by the application.
Upvotes: 6
Reputation: 981
Valgrind can show detailed information, but it slows down the target application significantly, and most of the time it changes the behavior of the application.
Exmap was something I didn't know yet, but it seems that you need a kernel module to get the information, which can be an obstacle.
I assume what everyone wants to know with respect to "memory usage" is the following... In Linux, the amount of physical memory a single process might use can be roughly divided into following categories.
M.a anonymous mapped memory
.p private
.s shared
M.n named mapped memory
.p private
.s shared
Utility included in Android called showmap is quite useful
virtual shared shared private private
size RSS PSS clean dirty clean dirty object
-------- -------- -------- -------- -------- -------- -------- ------------------------------
4 0 0 0 0 0 0 0:00 0 [vsyscall]
4 4 0 4 0 0 0 [vdso]
88 28 28 0 0 4 24 [stack]
12 12 12 0 0 0 12 7909 /lib/ld-2.11.1.so
12 4 4 0 0 0 4 89529 /usr/lib/locale/en_US.utf8/LC_IDENTIFICATION
28 0 0 0 0 0 0 86661 /usr/lib/gconv/gconv-modules.cache
4 0 0 0 0 0 0 87660 /usr/lib/locale/en_US.utf8/LC_MEASUREMENT
4 0 0 0 0 0 0 89528 /usr/lib/locale/en_US.utf8/LC_TELEPHONE
4 0 0 0 0 0 0 89527 /usr/lib/locale/en_US.utf8/LC_ADDRESS
4 0 0 0 0 0 0 87717 /usr/lib/locale/en_US.utf8/LC_NAME
4 0 0 0 0 0 0 87873 /usr/lib/locale/en_US.utf8/LC_PAPER
4 0 0 0 0 0 0 13879 /usr/lib/locale/en_US.utf8/LC_MESSAGES/SYS_LC_MESSAGES
4 0 0 0 0 0 0 89526 /usr/lib/locale/en_US.utf8/LC_MONETARY
4 0 0 0 0 0 0 89525 /usr/lib/locale/en_US.utf8/LC_TIME
4 0 0 0 0 0 0 11378 /usr/lib/locale/en_US.utf8/LC_NUMERIC
1156 8 8 0 0 4 4 11372 /usr/lib/locale/en_US.utf8/LC_COLLATE
252 0 0 0 0 0 0 11321 /usr/lib/locale/en_US.utf8/LC_CTYPE
128 52 1 52 0 0 0 7909 /lib/ld-2.11.1.so
2316 32 11 24 0 0 8 7986 /lib/libncurses.so.5.7
2064 8 4 4 0 0 4 7947 /lib/libdl-2.11.1.so
3596 472 46 440 0 4 28 7933 /lib/libc-2.11.1.so
2084 4 0 4 0 0 0 7995 /lib/libnss_compat-2.11.1.so
2152 4 0 4 0 0 0 7993 /lib/libnsl-2.11.1.so
2092 0 0 0 0 0 0 8009 /lib/libnss_nis-2.11.1.so
2100 0 0 0 0 0 0 7999 /lib/libnss_files-2.11.1.so
3752 2736 2736 0 0 864 1872 [heap]
24 24 24 0 0 0 24 [anon]
916 616 131 584 0 0 32 /bin/bash
-------- -------- -------- -------- -------- -------- -------- ------------------------------
22816 4004 3005 1116 0 876 2012 TOTAL
Upvotes: 14
Reputation: 28769
In recent versions of Linux, use the smaps subsystem. For example, for a process with a PID of 1234:
cat /proc/1234/smaps
It will tell you exactly how much memory it is using at that time. More importantly, it will divide the memory into private and shared, so you can tell how much memory your instance of the program is using, without including memory shared between multiple instances of the program.
Upvotes: 163
Reputation: 1650
There isn't a single answer for this because you can't pin point precisely the amount of memory a process uses. Most processes under Linux use shared libraries.
For instance, let's say you want to calculate memory usage for the 'ls' process. Do you count only the memory used by the executable 'ls' (if you could isolate it)? How about libc? Or all these other libraries that are required to run 'ls'?
linux-gate.so.1 => (0x00ccb000)
librt.so.1 => /lib/librt.so.1 (0x06bc7000)
libacl.so.1 => /lib/libacl.so.1 (0x00230000)
libselinux.so.1 => /lib/libselinux.so.1 (0x00162000)
libc.so.6 => /lib/libc.so.6 (0x00b40000)
libpthread.so.0 => /lib/libpthread.so.0 (0x00cb4000)
/lib/ld-linux.so.2 (0x00b1d000)
libattr.so.1 => /lib/libattr.so.1 (0x00229000)
libdl.so.2 => /lib/libdl.so.2 (0x00cae000)
libsepol.so.1 => /lib/libsepol.so.1 (0x0011a000)
You could argue that they are shared by other processes, but 'ls' can't be run on the system without them being loaded.
Also, if you need to know how much memory a process needs in order to do capacity planning, you have to calculate how much each additional copy of the process uses. I think /proc/PID/status might give you enough information of the memory usage at a single time. On the other hand, Valgrind will give you a better profile of the memory usage throughout the lifetime of the program.
Upvotes: 23
Reputation: 974
Another vote for Valgrind here, but I would like to add that you can use a tool like Alleyoop to help you interpret the results generated by Valgrind.
I use the two tools all the time and always have lean, non-leaky code to proudly show for it ;)
Upvotes: 3
Reputation: 4750
There isn't any easy way to calculate this. But some people have tried to get some good answers:
Upvotes: 142
Reputation: 16916
Get Valgrind. Give it your program to run, and it'll tell you plenty about its memory usage.
This would apply only for the case of a program that runs for some time and stops. I don't know if Valgrind can get its hands on an already-running process or shouldn't-stop processes such as daemons.
Upvotes: 6
Reputation: 11284
It is hard to tell for sure, but here are two "close" things that can help.
$ ps aux
will give you Virtual Size (VSZ)
You can also get detailed statistics from the /proc file-system by going to /proc/$pid/status
.
The most important is the VmSize, which should be close to what ps aux
gives.
/proc/19420$ cat status Name: firefox State: S (sleeping) Tgid: 19420 Pid: 19420 PPid: 1 TracerPid: 0 Uid: 1000 1000 1000 1000 Gid: 1000 1000 1000 1000 FDSize: 256 Groups: 4 6 20 24 25 29 30 44 46 107 109 115 124 1000 VmPeak: 222956 kB VmSize: 212520 kB VmLck: 0 kB VmHWM: 127912 kB VmRSS: 118768 kB VmData: 170180 kB VmStk: 228 kB VmExe: 28 kB VmLib: 35424 kB VmPTE: 184 kB Threads: 8 SigQ: 0/16382 SigPnd: 0000000000000000 ShdPnd: 0000000000000000 SigBlk: 0000000000000000 SigIgn: 0000000020001000 SigCgt: 000000018000442f CapInh: 0000000000000000 CapPrm: 0000000000000000 CapEff: 0000000000000000 Cpus_allowed: 03 Mems_allowed: 1 voluntary_ctxt_switches: 63422 nonvoluntary_ctxt_switches: 7171
Upvotes: 212
Reputation: 31445
If your code is in C or C++ you might be able to use getrusage()
which returns you various statistics about memory and time usage of your process.
Not all platforms support this though and will return 0 values for the memory-use options.
Instead you can look at the virtual file created in /proc/[pid]/statm
(where [pid]
is replaced by your process id. You can obtain this from getpid()
).
This file will look like a text file with 7 integers. You are probably most interested in the first (all memory use) and sixth (data memory use) numbers in this file.
Upvotes: 19
Reputation: 4287
I would suggest that you use atop. You can find everything about it on this page. It is capable of providing all the necessary KPI for your processes and it can also capture to a file.
Upvotes: 5
Reputation: 151
Three more methods to try:
ps aux --sort pmem
%MEM
.ps aux | awk '{print $2, $4, $11}' | sort -k2r | head -n 15
top -a
%MEM
(Extracted from here)
Upvotes: 15
Reputation: 641
If you want something quicker than profiling with Valgrind and your kernel is older and you can't use smaps, a ps with the options to show the resident set of the process (with ps -o rss,command
) can give you a quick and reasonable _aproximation_
of the real amount of non-swapped memory being used.
Upvotes: 4