Reputation:
Is it actually possible to do RPC calls from a server to a client with the net/rpc
package in Go? If no, is there a better solution out there?
Upvotes: 5
Views: 5851
Reputation: 483
I came across rpc2 which implements it. An example:
Server.go
// server.go
package main
import (
"net"
"github.com/cenkalti/rpc2"
"fmt"
)
type Args struct{ A, B int }
type Reply int
func main(){
srv := rpc2.NewServer()
srv.Handle("add", func(client *rpc2.Client, args *Args, reply *Reply) error{
// Reversed call (server to client)
var rep Reply
client.Call("mult", Args{2, 3}, &rep)
fmt.Println("mult result:", rep)
*reply = Reply(args.A + args.B)
return nil
})
lis, _ := net.Listen("tcp", "127.0.0.1:5000")
srv.Accept(lis)
}
Client.go
// client.go
package main
import (
"fmt"
"github.com/cenkalti/rpc2"
"net"
)
type Args struct{ A, B int }
type Reply int
func main(){
conn, _ := net.Dial("tcp", "127.0.0.1:5000")
clt := rpc2.NewClient(conn)
clt.Handle("mult", func(client *rpc2.Client, args *Args, reply *Reply) error {
*reply = Reply(args.A * args.B)
return nil
})
go clt.Run()
var rep Reply
clt.Call("add", Args{5, 2}, &rep)
fmt.Println("add result:", rep)
}
Upvotes: 2
Reputation: 425
I am currently using thrift (thrift4go) for server->client and client->server RPC functionality. By default, thrift does only client->server calls just like net/rpc. As I also required server->client communication, I did some research and found bidi-thrift. Bidi-thrift explains how to connect a java server + java client to have bidirectional thrift communication.
A TCP connection has an incomming and outgoing communication line (RC and TX). The idea of bidi-thrift is to split RS and TX and provide these to a server(processor) and client(remote) on both client-application and server-application. I found this to be hard to do in Go. Also, this way there is no "response" possible (the response line is in use). Therefore, all methods in the service's must be "oneway void". (fire and forget, call gives no result).
I changed the idea of bidi-thrift and made the client open two connections to the server, A and B. The first connection(A) is used to perform client -> server communication (where client makes the calls, as usual). The second connection(B) is 'hijacked', and connected to a server(processor) on the client, while it is connected to a client(remote) on the server. I've got this working with a Go server and a Java client. It works very well. It's fast and reliable (just like normal thrift is).
Some sources.. The B connection (server->client) is set up like this:
// factories
framedTransportFactory := thrift.NewTFramedTransportFactory(thrift.NewTTransportFactory())
protocolFactory := thrift.NewTBinaryProtocolFactoryDefault()
// create socket listener
addr, err := net.ResolveTCPAddr("tcp", "127.0.0.1:9091")
if err != nil {
log.Print("Error resolving address: ", err.Error(), "\n")
return
}
serverTransport, err := thrift.NewTServerSocketAddr(addr)
if err != nil {
log.Print("Error creating server socket: ", err.Error(), "\n")
return
}
// Start the server to listen for connections
log.Print("Starting the server for B communication (server->client) on ", addr, "\n")
err = serverTransport.Listen()
if err != nil {
log.Print("Error during B server: ", err.Error(), "\n")
return //err
}
// Accept new connections and handle those
for {
transport, err := serverTransport.Accept()
if err != nil {
return //err
}
if transport != nil {
// Each transport is handled in a goroutine so the server is availiable again.
go func() {
useTransport := framedTransportFactory.GetTransport(transport)
client := worldclient.NewWorldClientClientFactory(useTransport, protocolFactory)
// Thats it!
// Lets do something with the connction
result, err := client.Hello()
if err != nil {
log.Printf("Errror when calling Hello on client: %s\n", err)
}
// client.CallSomething()
}()
}
}
// preparations for B connection
TTransportFactory transportFactory = new TTransportFactory();
TProtocolFactory protocolFactory = new TBinaryProtocol.Factory();
YourServiceProcessor processor = new YourService.Processor<YourServiceProcessor>(new YourServiceProcessor(this));
/* Create thrift connection for B calls (server -> client) */
try {
// create the transport
final TTransport transport = new TSocket("127.0.0.1", 9091);
// open the transport
transport.open();
// add framing to the transport layer
final TTransport framedTransport = new TFramedTransport(transportFactory.getTransport(transport));
// connect framed transports to protocols
final TProtocol protocol = protocolFactory.getProtocol(framedTransport);
// let the processor handle the requests in new Thread
new Thread() {
public void run() {
try {
while (processor.process(protocol, protocol)) {}
} catch (TException e) {
e.printStackTrace();
} catch (NullPointerException e) {
e.printStackTrace();
}
}
}.start();
} catch(Exception e) {
e.printStackTrace();
}
Upvotes: 4
Reputation: 91329
RPC is a (remote) service. Whenever some computer requests a remote service then it is acting as a client asking the server to provide the service. Within this "definition" the concept of a server calling client RPC has no well defined meaning.
Upvotes: 1