Reputation: 1305
I have a list of vectors whose values are bounded between 1 and 100.
[[1]]
[[1]][[1]]
[1] "a"
[[1]][[2]]
[1] 41 5 53 55 56
[[2]]
[[2]][[1]]
[1] "b"
[[2]][[2]]
[1] 41 1 57 53 48
etc.
How do i somehow get to the following data.frame
no 1 2
1 NA b
41 a b
5 a NA
53 a NA
55 a NA
56 a NA
48 NA b
57 NA b
53 NA b
and from there fill in the missing rows and ordered according to the column "no" where column no. runs from 1 to 100? eg.
no 1 2
1 NA b
2 NA NA
3 NA NA
4 NA NA
5 a NA
etc. all the way until the 100th row.
Upvotes: 0
Views: 1659
Reputation: 81733
Here is an approach with lapply
:
The data:
dat <- list(list("a", c(41, 5, 53, 55, 56)), list("b", c(41, 1, 57, 53, 48)))
The solution:
lev <- 1:100 # the unique numbers
vec <- rep(NA, length(lev)) # a vector full of NAs
data.frame(no = lev,
setNames(lapply(dat,
function(x) "[<-"(vec, lev %in% x[[2]], x[[1]])),
seq_along(dat)), check.names = FALSE)
The output (the first 10 rows):
no 1 2
1 1 <NA> b
2 2 <NA> <NA>
3 3 <NA> <NA>
4 4 <NA> <NA>
5 5 a <NA>
6 6 <NA> <NA>
7 7 <NA> <NA>
8 8 <NA> <NA>
9 9 <NA> <NA>
10 10 <NA> <NA>
Upvotes: 2
Reputation: 66874
For the first part, try this:
x <- list(list("a",c(41,5,53,55,56)),list("b",c(41,1,57,53,48)))
xl <- lapply(x,function(y) `names<-`(as.data.frame(y),c("chr","no")))
xm <- merge(xl[[1]],xl[[2]],by="no",all=T)
xm
no chr.x chr.y
1 1 <NA> b
2 5 a <NA>
3 41 a b
4 48 <NA> b
5 53 a b
6 55 a <NA>
7 56 a <NA>
8 57 <NA> b
And for the second (I've not printed the output for brevity):
merge(data.frame(no=1:100),xm,all=T)
Upvotes: 2