Reputation: 3554
I'd like to superpose a histogram and an xyplot representing the cumulative distribution function using r's lattice package.
I've tried to accomplish this with custom panel functions, but can't seem to get it right--I'm getting hung up on one plot being univariate and one being bivariate I think.
Here's an example with the two plots I want stacked vertically:
set.seed(1)
x <- rnorm(100, 0, 1)
discrete.cdf <- function(x, decreasing=FALSE){
x <- x[order(x,decreasing=FALSE)]
result <- data.frame(rank=1:length(x),x=x)
result$cdf <- result$rank/nrow(result)
return(result)
}
my.df <- discrete.cdf(x)
chart.hist <- histogram(~x, data=my.df, xlab="")
chart.cdf <- xyplot(100*cdf~x, data=my.df, type="s",
ylab="Cumulative Percent of Total")
graphics.off()
trellis.device(width = 6, height = 8)
print(chart.hist, split = c(1,1,1,2), more = TRUE)
print(chart.cdf, split = c(1,2,1,2))
I'd like these superposed in the same frame, rather than stacked.
The following code doesn't work, nor do any of the simple variations of it that I have tried:
xyplot(cdf~x,data=cdf,
panel=function(...){
panel.xyplot(...)
panel.histogram(~x)
})
Upvotes: 3
Views: 1169
Reputation: 19454
You were on the right track with your custom panel function. The trick is passing the correct arguments to the panel.
- functions. For panel.histogram
, this means not passing a formula and supplying an appropriate value to the breaks
argument:
EDIT Proper percent values on y-axis and type
of plots
xyplot(100*cdf~x,data=my.df,
panel=function(...){
panel.histogram(..., breaks = do.breaks(range(x), nint = 8),
type = "percent")
panel.xyplot(..., type = "s")
})
Upvotes: 4
Reputation: 17100
This answer is just a placeholder until a better answer comes.
The hist()
function from the graphics
package has an option called add
. The following does what you want in the "classical" way:
plot( my.df$x, my.df$cdf * 100, type= "l" )
hist( my.df$x, add= T )
Upvotes: 3