Reputation: 50592
I have a small multithreaded script running in django and over time its starts using more and more memory. Leaving it for a full day eats about 6GB of RAM and I start to swap.
Following http://www.lshift.net/blog/2008/11/14/tracing-python-memory-leaks I see this as the most common types (with only 800M of memory used):
(Pdb) objgraph.show_most_common_types(limit=20)
dict 43065
tuple 28274
function 7335
list 6157
NavigableString 3479
instance 2454
cell 1256
weakref 974
wrapper_descriptor 836
builtin_function_or_method 766
type 742
getset_descriptor 562
module 423
method_descriptor 373
classobj 256
instancemethod 255
member_descriptor 218
property 185
Comment 183
__proxy__ 155
which doesn't show anything weird. What should I do now to help debug the memory problems?
Update: Trying some things people are recommending. I ran the program overnight, and when I work up, 50% * 8G == 4G of RAM used.
(Pdb) from pympler import muppy
(Pdb) muppy.print_summary()
types | # objects | total size
========================================== | =========== | ============
unicode | 210997 | 97.64 MB
list | 1547 | 88.29 MB
dict | 41630 | 13.21 MB
set | 50 | 8.02 MB
str | 109360 | 7.11 MB
tuple | 27898 | 2.29 MB
code | 6907 | 1.16 MB
type | 760 | 653.12 KB
weakref | 1014 | 87.14 KB
int | 3552 | 83.25 KB
function (__wrapper__) | 702 | 82.27 KB
wrapper_descriptor | 998 | 77.97 KB
cell | 1357 | 74.21 KB
<class 'pympler.asizeof.asizeof._Claskey | 1113 | 69.56 KB
function (__init__) | 574 | 67.27 KB
That doesn't sum to 4G, nor really give me any big data structured to go fix. The unicode is from a set() of "done" nodes, and the list's look like just random weakref
s.
I didn't use guppy since it required a C extension and I didn't have root so it was going to be a pain to build.
None of the objectI was using have a __del__
method, and looking through the libraries, it doesn't look like django nor the python-mysqldb do either. Any other ideas?
Upvotes: 29
Views: 23717
Reputation: 1058
See http://opensourcehacker.com/2008/03/07/debugging-django-memory-leak-with-trackrefs-and-guppy/ . Short answer: if you're running django but not in a web-request-based format, you need to manually run db.reset_queries()
(and of course have DEBUG=False, as others have mentioned). Django automatically does reset_queries()
after a web request, but in your format, that never happens.
Upvotes: 32
Reputation: 12895
See this excellent blog post from Ned Batchelder on how they traced down real memory leak in HP's Tabblo. A classic and worth reading.
Upvotes: 6
Reputation:
Is DEBUG=False in settings.py?
If not Django will happily store all the SQL queries you make which adds up.
Upvotes: 21
Reputation: 7231
Have you tried gc.set_debug() ?
You need to ask yourself simple questions:
__del__
methods? Do I absolutely, unequivocally, need them?See, the main issue would be a cycle of objects containing __del__
methods:
import gc
class A(object):
def __del__(self):
print 'a deleted'
if hasattr(self, 'b'):
delattr(self, 'b')
class B(object):
def __init__(self, a):
self.a = a
def __del__(self):
print 'b deleted'
del self.a
def createcycle():
a = A()
b = B(a)
a.b = b
return a, b
gc.set_debug(gc.DEBUG_LEAK)
a, b = createcycle()
# remove references
del a, b
# prints:
## gc: uncollectable <A 0x...>
## gc: uncollectable <B 0x...>
## gc: uncollectable <dict 0x...>
## gc: uncollectable <dict 0x...>
gc.collect()
# to solve this we break explicitely the cycles:
a, b = createcycle()
del a.b
del a, b
# objects are removed correctly:
## a deleted
## b deleted
gc.collect()
I would really encourage you to flag objects / concepts that are cycling in your application and focus on their lifetime: when you don't need them anymore, do we have anything referencing it?
Even for cycles without __del__
methods, we can have an issue:
import gc
# class without destructor
class A(object): pass
def createcycle():
# a -> b -> c
# ^ |
# ^<--<--<--|
a = A()
b = A()
a.next = b
c = A()
b.next = c
c.next = a
return a, b, b
gc.set_debug(gc.DEBUG_LEAK)
a, b, c = createcycle()
# since we have no __del__ methods, gc is able to collect the cycle:
del a, b, c
# no panic message, everything is collectable:
##gc: collectable <A 0x...>
##gc: collectable <A 0x...>
##gc: collectable <dict 0x...>
##gc: collectable <A 0x...>
##gc: collectable <dict 0x...>
##gc: collectable <dict 0x...>
gc.collect()
a, b, c = createcycle()
# but as long as we keep an exterior ref to the cycle...:
seen = dict()
seen[a] = True
# delete the cycle
del a, b, c
# nothing is collected
gc.collect()
If you have to use "seen"-like dictionaries, or history, be careful that you keep only the actual data you need, and no external references to it.
I'm a bit disappointed now by set_debug
, I wish it could be configured to output data somewhere else than to stderr, but hopefully that should change soon.
Upvotes: 6
Reputation: 37634
Do you use any extension? They are a wonderful place for memory leaks, and will not be tracked by python tools.
Upvotes: 1
Reputation: 127447
I think you should use different tools. Apparently, the statistics you got is only about GC objects (i.e. objects which may participate in cycles); most notably, it lacks strings.
I recommend to use Pympler; this should provide you with more detailed statistics.
Upvotes: 1