Reputation: 23
I'm new to using R and I am trying to create a matrix of correlations. I have three independent variables (x1,x2,x3) and one dependent varaible (y).
I've been trying to use cor to make a matrix of the correlations, but so far I have bene unable to find a formula for doing this.
Upvotes: 2
Views: 1231
Reputation: 4760
Correct me if I'm wrong, but assuming this is related to a regression problem, this might be what you're looking for:
#Set the number of data points and build 3 independent variables
set.seed(0)
numdatpoi <- 7
x1 <- runif(numdatpoi)
x2 <- runif(numdatpoi)
x3 <- runif(numdatpoi)
#Build the dependent variable with some added noise
noisig <- 10
yact <- 2 + (3 * x1) + (5 * x2) + (10 * x3)
y <- yact + rnorm(n=numdatpoi, mean=0, sd=noisig)
#Fit a linear model
rmod <- lm(y ~ x1 + x2 + x3)
#Build the variance-covariance matrix. This matrix is typically what is wanted.
(vcv <- vcov(rmod))
#If needed, convert the variance-covariance matrix to a correlation matrix
(cm <- cov2cor(vcv))
From the above, here's the variance-covariance matrix:
(Intercept) x1 x2 x3
(Intercept) 466.5773 14.3368 -251.1715 -506.1587
x1 14.3368 452.9569 -170.5603 -307.7007
x2 -251.1715 -170.5603 387.2546 255.9756
x3 -506.1587 -307.7007 255.9756 873.6784
And, here's the associated correlation matrix:
(Intercept) x1 x2 x3
(Intercept) 1.00000000 0.03118617 -0.5908950 -0.7927735
x1 0.03118617 1.00000000 -0.4072406 -0.4891299
x2 -0.59089496 -0.40724064 1.0000000 0.4400728
x3 -0.79277352 -0.48912986 0.4400728 1.0000000
Upvotes: 1
Reputation: 110
x1=rnorm(20)
x2=rnorm(20)
x3=rnorm(20)
y=rnorm(20)
data=cbind(y,x1,x2,x3)
cor(data)
Upvotes: 2
Reputation: 9850
If I have correctly understood, you have a matrix of 3 columns (say x1 to x3) and many rows (as y values). You may act as follows:
foo = matrix(runif(30), ncol=3) # creating a matrix of 3 columns
cor(foo)
If you have already your values in 3 vectors x1 to x3, you can make foo
like this: foo=data.frame(x1,x2,x3)
Upvotes: 1