bigbug
bigbug

Reputation: 59544

How to drop rows of Pandas DataFrame whose value in a certain column is NaN

I have this DataFrame and want only the records whose EPS column is not NaN:

                 STK_ID  EPS  cash
STK_ID RPT_Date                   
601166 20111231  601166  NaN   NaN
600036 20111231  600036  NaN    12
600016 20111231  600016  4.3   NaN
601009 20111231  601009  NaN   NaN
601939 20111231  601939  2.5   NaN
000001 20111231  000001  NaN   NaN

...i.e. something like df.drop(....) to get this resulting dataframe:

                  STK_ID  EPS  cash
STK_ID RPT_Date                   
600016 20111231  600016  4.3   NaN
601939 20111231  601939  2.5   NaN

How do I do that?

Upvotes: 1470

Views: 2275609

Answers (17)

Sole Galli
Sole Galli

Reputation: 1082

Those who want to make dropna part of a feature engineering / scikit-learn pipeline, can use DropMissingData from Feature-engine.

The following will drop all rows with nan in a dataframe:

import pandas as pd
import numpy as np
from feature_engine.imputation import DropMissingData
X = pd.DataFrame(dict(
       x1 = [np.nan,1,1,0,np.nan],
       x2 = ["a", np.nan, "b", np.nan, "a"],
       ))
dmd = DropMissingData()
dmd.fit(X)
dmd.transform(X)

The result of the former block is:

    x1 x2
2  1.0  b

To drop rows with nan only in a specific column, for example x2:

dmd = DropMissingData(variables = "x2")
dmd.fit(X)
dmd.transform(X)

The former block returns the following:

    x1 x2
0  NaN  a
2  1.0  b
4  NaN  a

Finally, from within a Pipeline:

from sklearn.linear_model import Lasso
from sklearn.preprocessing import OrdinalEncoder

from feature_engine.imputation import DropMissingData
from feature_engine.pipeline import Pipeline

pipe = Pipeline(
    [
        ("drop", DropMissingData()),
        ("enc", OrdinalEncoder()),
        ("lasso", Lasso(random_state=10)),
    ]
).set_output(transform="pandas")

pipe.fit(X, y)
preds_pipe = pipe.predict(X)

More details in Feature-engine's dropna documentation

Upvotes: 2

cottontail
cottontail

Reputation: 23331

dropna vs boolean indexing

If we look at the source code, under the hood, dropna() is precisely notna() + boolean indexing. Depending on what was passed to how=, all() or any() is called to reduce the notna mask into a Series.

The main difference is that with dropna(), you specify the rows to drop, while with the boolean indexing, you look you specify the rows to keep, which is logically the opposite problem. So depending on the use-case, it might be more intuitive to approach the problem of dropping rows with NaN values from the perspective of keeping non-NaN rows or dropping NaN rows.

To sum up, the following are True for any dataframe df:

df = pd.DataFrame({"A": [1, 2, pd.NA], "B": [pd.NA, 'a', 'b'], "C": [pd.NA, 10, 20]})

cols = ['A', 'B']
x1 = df.dropna(subset=cols, how='any')      # specify which rows to drop
y1 = df[df[cols].notna().all(axis=1)]       # specify which rows to keep
assert x1.equals(y1)

x2 = df.dropna(subset=cols, how='all')
y2 = df[df[cols].notna().any(axis=1)]
assert x2.equals(y2)

Also, thresh= argument is equivalent to checking if the number of non-NaN values in each row is not less than thresh value; in other words, the following is True:

thresh = 2
x3 = df[df[cols].count(axis=1) >= thresh]
y3 = df.dropna(subset=cols, thresh=thresh)
assert x3.equals(y3)

Now, if the task is to simply drop rows with NaN values, then dropna() is most intuitive and should be used. However, since mask + boolean indexing is more general, you can define a more complex mask and filter using it.

For example, say, you want to drop rows where either column A value is NaN or there are more than 1 NaN value. This requires 2 function calls using dropna. However, with boolean indexing, you can filter using a single mask.

msk = (df.isna().sum(axis=1) > 1) | df['A'].isna()
df = df[~msk]

On a side note, if you get SettingWithCopyWarning when you modify a dataframe constructed via boolean indexing, consider setting copy-on-write mode to True (read more about it here).

pd.set_option('mode.copy_on_write', True)   # turn on copy-on-write

msk = (df.isna().sum(axis=1) > 1) | df['A'].isna()
df1 = df[~msk]
df1['new_col'] = 1                          # <--- no SettingWithCopyWarning

Upvotes: 0

rachwa
rachwa

Reputation: 2310

You can also use notna inside query:

In [4]: df.query('EPS.notna().values')
Out[4]: 
                 STK_ID.1  EPS  cash
STK_ID RPT_Date                     
600016 20111231    600016  4.3   NaN
601939 20111231    601939  2.5   NaN

Upvotes: 3

Simon
Simon

Reputation: 115

you can try with:

df['EPS'].dropna()

Upvotes: -4

Taie
Taie

Reputation: 1189

The following method worked for me. It would help if none of the above methods work:

df[df['colum_name'].str.len() >= 1]

The basic idea is that you pick up the record only if the length strength is greater than 1. This is especially useful if you are dealing with string data

Best!

Upvotes: 4

Joe
Joe

Reputation: 12417

You can use this:

df.dropna(subset=['EPS'], how='all', inplace=True)

Upvotes: 166

cs95
cs95

Reputation: 402942

How to drop rows of Pandas DataFrame whose value in a certain column is NaN

This is an old question which has been beaten to death but I do believe there is some more useful information to be surfaced on this thread. Read on if you're looking for the answer to any of the following questions:

  • Can I drop rows if any of its values have NaNs? What about if all of them are NaN?
  • Can I only look at NaNs in specific columns when dropping rows?
  • Can I drop rows with a specific count of NaN values?
  • How do I drop columns instead of rows?
  • I tried all of the options above but my DataFrame just won't update!

DataFrame.dropna: Usage, and Examples

It's already been said that df.dropna is the canonical method to drop NaNs from DataFrames, but there's nothing like a few visual cues to help along the way.

# Setup
df = pd.DataFrame({
    'A': [np.nan, 2, 3, 4],  
    'B': [np.nan, np.nan, 2, 3], 
    'C': [np.nan]*3 + [3]}) 

df                      
     A    B    C
0  NaN  NaN  NaN
1  2.0  NaN  NaN
2  3.0  2.0  NaN
3  4.0  3.0  3.0

Below is a detail of the most important arguments and how they work, arranged in an FAQ format.


Can I drop rows if any of its values have NaNs? What about if all of them are NaN?

This is where the how=... argument comes in handy. It can be one of

  • 'any' (default) - drops rows if at least one column has NaN
  • 'all' - drops rows only if all of its columns have NaNs

<!_ ->

# Removes all but the last row since there are no NaNs 
df.dropna()

     A    B    C
3  4.0  3.0  3.0

# Removes the first row only
df.dropna(how='all')

     A    B    C
1  2.0  NaN  NaN
2  3.0  2.0  NaN
3  4.0  3.0  3.0

Note
If you just want to see which rows are null (IOW, if you want a boolean mask of rows), use isna:

df.isna()

       A      B      C
0   True   True   True
1  False   True   True
2  False  False   True
3  False  False  False

df.isna().any(axis=1)

0     True
1     True
2     True
3    False
dtype: bool

To get the inversion of this result, use notna instead.


Can I only look at NaNs in specific columns when dropping rows?

This is a use case for the subset=[...] argument.

Specify a list of columns (or indexes with axis=1) to tells pandas you only want to look at these columns (or rows with axis=1) when dropping rows (or columns with axis=1.

# Drop all rows with NaNs in A
df.dropna(subset=['A'])

     A    B    C
1  2.0  NaN  NaN
2  3.0  2.0  NaN
3  4.0  3.0  3.0

# Drop all rows with NaNs in A OR B
df.dropna(subset=['A', 'B'])

     A    B    C
2  3.0  2.0  NaN
3  4.0  3.0  3.0

Can I drop rows with a specific count of NaN values?

This is a use case for the thresh=... argument. Specify the minimum number of NON-NULL values as an integer.

df.dropna(thresh=1)  

     A    B    C
1  2.0  NaN  NaN
2  3.0  2.0  NaN
3  4.0  3.0  3.0

df.dropna(thresh=2)

     A    B    C
2  3.0  2.0  NaN
3  4.0  3.0  3.0

df.dropna(thresh=3)

     A    B    C
3  4.0  3.0  3.0

The thing to note here is you need to specify how many NON-NULL values you want to keep, rather than how many NULL values you want to drop. This is a pain point for new users.

Luckily the fix is easy: if you have a count of NULL values, simply subtract it from the column size to get the correct thresh argument for the function.

required_min_null_values_to_drop = 2 # drop rows with at least 2 NaN
df.dropna(thresh=df.shape[1] - required_min_null_values_to_drop + 1)

     A    B    C
2  3.0  2.0  NaN
3  4.0  3.0  3.0

How do I drop columns instead of rows?

Use the axis=... argument, it can be axis=0 or axis=1.

Tells the function whether you want to drop rows (axis=0) or drop columns (axis=1).

df.dropna()

     A    B    C
3  4.0  3.0  3.0

# All columns have rows, so the result is empty.
df.dropna(axis=1)

Empty DataFrame
Columns: []
Index: [0, 1, 2, 3]

# Here's a different example requiring the column to have all NaN rows
# to be dropped. In this case no columns satisfy the condition.
df.dropna(axis=1, how='all')

     A    B    C
0  NaN  NaN  NaN
1  2.0  NaN  NaN
2  3.0  2.0  NaN
3  4.0  3.0  3.0

# Here's a different example requiring a column to have at least 2 NON-NULL
# values. Column C has less than 2 NON-NULL values, so it should be dropped.
df.dropna(axis=1, thresh=2)

     A    B
0  NaN  NaN
1  2.0  NaN
2  3.0  2.0
3  4.0  3.0

I tried all of the options above but my DataFrame just won't update!

dropna, like most other functions in the pandas API returns a new DataFrame (a copy of the original with changes) as the result, so you should assign it back if you want to see changes.

df.dropna(...) # wrong
df.dropna(..., inplace=True) # right, but not recommended
df = df.dropna(...) # right

Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

DataFrame.dropna(
    self, axis=0, how='any', thresh=None, subset=None, inplace=False)

enter image description here

Upvotes: 69

Pradeep Singh
Pradeep Singh

Reputation: 470

In datasets having large number of columns its even better to see how many columns contain null values and how many don't.

print("No. of columns containing null values")
print(len(df.columns[df.isna().any()]))

print("No. of columns not containing null values")
print(len(df.columns[df.notna().all()]))

print("Total no. of columns in the dataframe")
print(len(df.columns))

For example in my dataframe it contained 82 columns, of which 19 contained at least one null value.

Further you can also automatically remove cols and rows depending on which has more null values
Here is the code which does this intelligently:

df = df.drop(df.columns[df.isna().sum()>len(df.columns)],axis = 1)
df = df.dropna(axis = 0).reset_index(drop=True)

Note: Above code removes all of your null values. If you want null values, process them before.

Upvotes: 2

eumiro
eumiro

Reputation: 213055

Don't drop, just take the rows where EPS is not NA:

df = df[df['EPS'].notna()]

Upvotes: 1641

keramat
keramat

Reputation: 4543

Another version:

df[~df['EPS'].isna()]

Upvotes: 4

Noordeen
Noordeen

Reputation: 1614

Simple and easy way

df.dropna(subset=['EPS'],inplace=True)

source: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html

Upvotes: 32

Gil Baggio
Gil Baggio

Reputation: 14003

Simplest of all solutions:

filtered_df = df[df['EPS'].notnull()]

The above solution is way better than using np.isfinite()

Upvotes: 43

Aman
Aman

Reputation: 47219

This question is already resolved, but...

...also consider the solution suggested by Wouter in his original comment. The ability to handle missing data, including dropna(), is built into pandas explicitly. Aside from potentially improved performance over doing it manually, these functions also come with a variety of options which may be useful.

In [24]: df = pd.DataFrame(np.random.randn(10,3))

In [25]: df.iloc[::2,0] = np.nan; df.iloc[::4,1] = np.nan; df.iloc[::3,2] = np.nan;

In [26]: df
Out[26]:
          0         1         2
0       NaN       NaN       NaN
1  2.677677 -1.466923 -0.750366
2       NaN  0.798002 -0.906038
3  0.672201  0.964789       NaN
4       NaN       NaN  0.050742
5 -1.250970  0.030561 -2.678622
6       NaN  1.036043       NaN
7  0.049896 -0.308003  0.823295
8       NaN       NaN  0.637482
9 -0.310130  0.078891       NaN

In [27]: df.dropna()     #drop all rows that have any NaN values
Out[27]:
          0         1         2
1  2.677677 -1.466923 -0.750366
5 -1.250970  0.030561 -2.678622
7  0.049896 -0.308003  0.823295

In [28]: df.dropna(how='all')     #drop only if ALL columns are NaN
Out[28]:
          0         1         2
1  2.677677 -1.466923 -0.750366
2       NaN  0.798002 -0.906038
3  0.672201  0.964789       NaN
4       NaN       NaN  0.050742
5 -1.250970  0.030561 -2.678622
6       NaN  1.036043       NaN
7  0.049896 -0.308003  0.823295
8       NaN       NaN  0.637482
9 -0.310130  0.078891       NaN

In [29]: df.dropna(thresh=2)   #Drop row if it does not have at least two values that are **not** NaN
Out[29]:
          0         1         2
1  2.677677 -1.466923 -0.750366
2       NaN  0.798002 -0.906038
3  0.672201  0.964789       NaN
5 -1.250970  0.030561 -2.678622
7  0.049896 -0.308003  0.823295
9 -0.310130  0.078891       NaN

In [30]: df.dropna(subset=[1])   #Drop only if NaN in specific column (as asked in the question)
Out[30]:
          0         1         2
1  2.677677 -1.466923 -0.750366
2       NaN  0.798002 -0.906038
3  0.672201  0.964789       NaN
5 -1.250970  0.030561 -2.678622
6       NaN  1.036043       NaN
7  0.049896 -0.308003  0.823295
9 -0.310130  0.078891       NaN

There are also other options (See docs at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html), including dropping columns instead of rows.

Pretty handy!

Upvotes: 1223

MaxU - stand with Ukraine
MaxU - stand with Ukraine

Reputation: 210942

yet another solution which uses the fact that np.nan != np.nan:

In [149]: df.query("EPS == EPS")
Out[149]:
                 STK_ID  EPS  cash
STK_ID RPT_Date
600016 20111231  600016  4.3   NaN
601939 20111231  601939  2.5   NaN

Upvotes: 15

David
David

Reputation: 39

It may be added at that '&' can be used to add additional conditions e.g.

df = df[(df.EPS > 2.0) & (df.EPS <4.0)]

Notice that when evaluating the statements, pandas needs parenthesis.

Upvotes: 3

Anton Protopopov
Anton Protopopov

Reputation: 31692

You could use dataframe method notnull or inverse of isnull, or numpy.isnan:

In [332]: df[df.EPS.notnull()]
Out[332]:
   STK_ID  RPT_Date  STK_ID.1  EPS  cash
2  600016  20111231    600016  4.3   NaN
4  601939  20111231    601939  2.5   NaN


In [334]: df[~df.EPS.isnull()]
Out[334]:
   STK_ID  RPT_Date  STK_ID.1  EPS  cash
2  600016  20111231    600016  4.3   NaN
4  601939  20111231    601939  2.5   NaN


In [347]: df[~np.isnan(df.EPS)]
Out[347]:
   STK_ID  RPT_Date  STK_ID.1  EPS  cash
2  600016  20111231    600016  4.3   NaN
4  601939  20111231    601939  2.5   NaN

Upvotes: 26

Kirk Hadley
Kirk Hadley

Reputation: 1646

I know this has already been answered, but just for the sake of a purely pandas solution to this specific question as opposed to the general description from Aman (which was wonderful) and in case anyone else happens upon this:

import pandas as pd
df = df[pd.notnull(df['EPS'])]

Upvotes: 150

Related Questions