Reputation: 59544
I have this DataFrame and want only the records whose EPS column is not NaN:
STK_ID EPS cash
STK_ID RPT_Date
601166 20111231 601166 NaN NaN
600036 20111231 600036 NaN 12
600016 20111231 600016 4.3 NaN
601009 20111231 601009 NaN NaN
601939 20111231 601939 2.5 NaN
000001 20111231 000001 NaN NaN
...i.e. something like df.drop(....)
to get this resulting dataframe:
STK_ID EPS cash
STK_ID RPT_Date
600016 20111231 600016 4.3 NaN
601939 20111231 601939 2.5 NaN
How do I do that?
Upvotes: 1470
Views: 2275609
Reputation: 1082
Those who want to make dropna part of a feature engineering / scikit-learn pipeline, can use DropMissingData
from Feature-engine.
The following will drop all rows with nan in a dataframe:
import pandas as pd
import numpy as np
from feature_engine.imputation import DropMissingData
X = pd.DataFrame(dict(
x1 = [np.nan,1,1,0,np.nan],
x2 = ["a", np.nan, "b", np.nan, "a"],
))
dmd = DropMissingData()
dmd.fit(X)
dmd.transform(X)
The result of the former block is:
x1 x2
2 1.0 b
To drop rows with nan only in a specific column, for example x2:
dmd = DropMissingData(variables = "x2")
dmd.fit(X)
dmd.transform(X)
The former block returns the following:
x1 x2
0 NaN a
2 1.0 b
4 NaN a
Finally, from within a Pipeline:
from sklearn.linear_model import Lasso
from sklearn.preprocessing import OrdinalEncoder
from feature_engine.imputation import DropMissingData
from feature_engine.pipeline import Pipeline
pipe = Pipeline(
[
("drop", DropMissingData()),
("enc", OrdinalEncoder()),
("lasso", Lasso(random_state=10)),
]
).set_output(transform="pandas")
pipe.fit(X, y)
preds_pipe = pipe.predict(X)
More details in Feature-engine's dropna documentation
Upvotes: 2
Reputation: 23331
dropna
vs boolean indexingIf we look at the source code, under the hood, dropna()
is precisely notna()
+ boolean indexing. Depending on what was passed to how=
, all()
or any()
is called to reduce the notna
mask into a Series.
The main difference is that with dropna()
, you specify the rows to drop, while with the boolean indexing, you look you specify the rows to keep, which is logically the opposite problem. So depending on the use-case, it might be more intuitive to approach the problem of dropping rows with NaN values from the perspective of keeping non-NaN rows or dropping NaN rows.
To sum up, the following are True for any dataframe df
:
df = pd.DataFrame({"A": [1, 2, pd.NA], "B": [pd.NA, 'a', 'b'], "C": [pd.NA, 10, 20]})
cols = ['A', 'B']
x1 = df.dropna(subset=cols, how='any') # specify which rows to drop
y1 = df[df[cols].notna().all(axis=1)] # specify which rows to keep
assert x1.equals(y1)
x2 = df.dropna(subset=cols, how='all')
y2 = df[df[cols].notna().any(axis=1)]
assert x2.equals(y2)
Also, thresh=
argument is equivalent to checking if the number of non-NaN values in each row is not less than thresh
value; in other words, the following is True:
thresh = 2
x3 = df[df[cols].count(axis=1) >= thresh]
y3 = df.dropna(subset=cols, thresh=thresh)
assert x3.equals(y3)
Now, if the task is to simply drop rows with NaN values, then dropna()
is most intuitive and should be used. However, since mask + boolean indexing is more general, you can define a more complex mask and filter using it.
For example, say, you want to drop rows where either column A
value is NaN or there are more than 1 NaN value. This requires 2 function calls using dropna
. However, with boolean indexing, you can filter using a single mask.
msk = (df.isna().sum(axis=1) > 1) | df['A'].isna()
df = df[~msk]
On a side note, if you get SettingWithCopyWarning
when you modify a dataframe constructed via boolean indexing, consider setting copy-on-write mode to True (read more about it here).
pd.set_option('mode.copy_on_write', True) # turn on copy-on-write
msk = (df.isna().sum(axis=1) > 1) | df['A'].isna()
df1 = df[~msk]
df1['new_col'] = 1 # <--- no SettingWithCopyWarning
Upvotes: 0
Reputation: 2310
You can also use notna
inside query
:
In [4]: df.query('EPS.notna().values')
Out[4]:
STK_ID.1 EPS cash
STK_ID RPT_Date
600016 20111231 600016 4.3 NaN
601939 20111231 601939 2.5 NaN
Upvotes: 3
Reputation: 1189
The following method worked for me. It would help if none of the above methods work:
df[df['colum_name'].str.len() >= 1]
The basic idea is that you pick up the record only if the length strength is greater than 1. This is especially useful if you are dealing with string data
Best!
Upvotes: 4
Reputation: 12417
You can use this:
df.dropna(subset=['EPS'], how='all', inplace=True)
Upvotes: 166
Reputation: 402942
How to drop rows of Pandas DataFrame whose value in a certain column is NaN
This is an old question which has been beaten to death but I do believe there is some more useful information to be surfaced on this thread. Read on if you're looking for the answer to any of the following questions:
DataFrame.dropna
: Usage, and ExamplesIt's already been said that df.dropna
is the canonical method to drop NaNs from DataFrames, but there's nothing like a few visual cues to help along the way.
# Setup
df = pd.DataFrame({
'A': [np.nan, 2, 3, 4],
'B': [np.nan, np.nan, 2, 3],
'C': [np.nan]*3 + [3]})
df
A B C
0 NaN NaN NaN
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Below is a detail of the most important arguments and how they work, arranged in an FAQ format.
This is where the how=...
argument comes in handy. It can be one of
'any'
(default) - drops rows if at least one column has NaN'all'
- drops rows only if all of its columns have NaNs<!_ ->
# Removes all but the last row since there are no NaNs
df.dropna()
A B C
3 4.0 3.0 3.0
# Removes the first row only
df.dropna(how='all')
A B C
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Note
If you just want to see which rows are null (IOW, if you want a boolean mask of rows), useisna
:df.isna() A B C 0 True True True 1 False True True 2 False False True 3 False False False df.isna().any(axis=1) 0 True 1 True 2 True 3 False dtype: bool
To get the inversion of this result, use
notna
instead.
This is a use case for the subset=[...]
argument.
Specify a list of columns (or indexes with axis=1
) to tells pandas you only want to look at these columns (or rows with axis=1
) when dropping rows (or columns with axis=1
.
# Drop all rows with NaNs in A
df.dropna(subset=['A'])
A B C
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
# Drop all rows with NaNs in A OR B
df.dropna(subset=['A', 'B'])
A B C
2 3.0 2.0 NaN
3 4.0 3.0 3.0
This is a use case for the thresh=...
argument. Specify the minimum number of NON-NULL values as an integer.
df.dropna(thresh=1)
A B C
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
df.dropna(thresh=2)
A B C
2 3.0 2.0 NaN
3 4.0 3.0 3.0
df.dropna(thresh=3)
A B C
3 4.0 3.0 3.0
The thing to note here is you need to specify how many NON-NULL values you want to keep, rather than how many NULL values you want to drop. This is a pain point for new users.
Luckily the fix is easy: if you have a count of NULL values, simply subtract it from the column size to get the correct thresh argument for the function.
required_min_null_values_to_drop = 2 # drop rows with at least 2 NaN
df.dropna(thresh=df.shape[1] - required_min_null_values_to_drop + 1)
A B C
2 3.0 2.0 NaN
3 4.0 3.0 3.0
Use the axis=...
argument, it can be axis=0
or axis=1
.
Tells the function whether you want to drop rows (axis=0
) or drop columns (axis=1
).
df.dropna()
A B C
3 4.0 3.0 3.0
# All columns have rows, so the result is empty.
df.dropna(axis=1)
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3]
# Here's a different example requiring the column to have all NaN rows
# to be dropped. In this case no columns satisfy the condition.
df.dropna(axis=1, how='all')
A B C
0 NaN NaN NaN
1 2.0 NaN NaN
2 3.0 2.0 NaN
3 4.0 3.0 3.0
# Here's a different example requiring a column to have at least 2 NON-NULL
# values. Column C has less than 2 NON-NULL values, so it should be dropped.
df.dropna(axis=1, thresh=2)
A B
0 NaN NaN
1 2.0 NaN
2 3.0 2.0
3 4.0 3.0
dropna
, like most other functions in the pandas API returns a new DataFrame (a copy of the original with changes) as the result, so you should assign it back if you want to see changes.
df.dropna(...) # wrong
df.dropna(..., inplace=True) # right, but not recommended
df = df.dropna(...) # right
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
DataFrame.dropna( self, axis=0, how='any', thresh=None, subset=None, inplace=False)
Upvotes: 69
Reputation: 470
In datasets having large number of columns its even better to see how many columns contain null values and how many don't.
print("No. of columns containing null values")
print(len(df.columns[df.isna().any()]))
print("No. of columns not containing null values")
print(len(df.columns[df.notna().all()]))
print("Total no. of columns in the dataframe")
print(len(df.columns))
For example in my dataframe it contained 82 columns, of which 19 contained at least one null value.
Further you can also automatically remove cols and rows depending on which has more null values
Here is the code which does this intelligently:
df = df.drop(df.columns[df.isna().sum()>len(df.columns)],axis = 1)
df = df.dropna(axis = 0).reset_index(drop=True)
Note: Above code removes all of your null values. If you want null values, process them before.
Upvotes: 2
Reputation: 213055
Don't drop, just take the rows where EPS is not NA:
df = df[df['EPS'].notna()]
Upvotes: 1641
Reputation: 1614
Simple and easy way
df.dropna(subset=['EPS'],inplace=True)
source: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html
Upvotes: 32
Reputation: 14003
Simplest of all solutions:
filtered_df = df[df['EPS'].notnull()]
The above solution is way better than using np.isfinite()
Upvotes: 43
Reputation: 47219
This question is already resolved, but...
...also consider the solution suggested by Wouter in his original comment. The ability to handle missing data, including dropna()
, is built into pandas explicitly. Aside from potentially improved performance over doing it manually, these functions also come with a variety of options which may be useful.
In [24]: df = pd.DataFrame(np.random.randn(10,3))
In [25]: df.iloc[::2,0] = np.nan; df.iloc[::4,1] = np.nan; df.iloc[::3,2] = np.nan;
In [26]: df
Out[26]:
0 1 2
0 NaN NaN NaN
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
4 NaN NaN 0.050742
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
8 NaN NaN 0.637482
9 -0.310130 0.078891 NaN
In [27]: df.dropna() #drop all rows that have any NaN values
Out[27]:
0 1 2
1 2.677677 -1.466923 -0.750366
5 -1.250970 0.030561 -2.678622
7 0.049896 -0.308003 0.823295
In [28]: df.dropna(how='all') #drop only if ALL columns are NaN
Out[28]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
4 NaN NaN 0.050742
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
8 NaN NaN 0.637482
9 -0.310130 0.078891 NaN
In [29]: df.dropna(thresh=2) #Drop row if it does not have at least two values that are **not** NaN
Out[29]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
In [30]: df.dropna(subset=[1]) #Drop only if NaN in specific column (as asked in the question)
Out[30]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
There are also other options (See docs at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html), including dropping columns instead of rows.
Pretty handy!
Upvotes: 1223
Reputation: 210942
yet another solution which uses the fact that np.nan != np.nan
:
In [149]: df.query("EPS == EPS")
Out[149]:
STK_ID EPS cash
STK_ID RPT_Date
600016 20111231 600016 4.3 NaN
601939 20111231 601939 2.5 NaN
Upvotes: 15
Reputation: 39
It may be added at that '&' can be used to add additional conditions e.g.
df = df[(df.EPS > 2.0) & (df.EPS <4.0)]
Notice that when evaluating the statements, pandas needs parenthesis.
Upvotes: 3
Reputation: 31692
You could use dataframe method notnull or inverse of isnull, or numpy.isnan:
In [332]: df[df.EPS.notnull()]
Out[332]:
STK_ID RPT_Date STK_ID.1 EPS cash
2 600016 20111231 600016 4.3 NaN
4 601939 20111231 601939 2.5 NaN
In [334]: df[~df.EPS.isnull()]
Out[334]:
STK_ID RPT_Date STK_ID.1 EPS cash
2 600016 20111231 600016 4.3 NaN
4 601939 20111231 601939 2.5 NaN
In [347]: df[~np.isnan(df.EPS)]
Out[347]:
STK_ID RPT_Date STK_ID.1 EPS cash
2 600016 20111231 600016 4.3 NaN
4 601939 20111231 601939 2.5 NaN
Upvotes: 26
Reputation: 1646
I know this has already been answered, but just for the sake of a purely pandas solution to this specific question as opposed to the general description from Aman (which was wonderful) and in case anyone else happens upon this:
import pandas as pd
df = df[pd.notnull(df['EPS'])]
Upvotes: 150