Reputation: 4180
I tried to write a wrapper function to do likelihood ratio tests in batches. I tried to include update() to update the initial model. However, it seems that instead of looking for objects inside the function, it searches for objects in the global environment.
fake <- data.frame(subj= rep(1:5, 4),
factor1 = rep(LETTERS[c(1,2,1,2)], each=5),
factor2 = rep(letters[1:2], each=10),
data=sort(rlnorm(20)))
foo <- function(){
temp <- fake
model1 <- lmer(data~factor1*factor2 + (1 |subj), temp)
model1a <- update(model1, ~.-factor1:factor2)
model1a}
And it gives an error message below:
Error in eval(expr, envir, enclos) : object 'factor1' not found
Is there anyway to make update() search within the function? Thank you!
EDIT:
I made a mistake. I wanted to pass "temp" to lmer, not "fake".
EDIT2: One convenient solution suggested is to simply specify the data object. Although update() now has no problem with this, anova() seems to think that the models I am trying to compare are based on different data objects
foo <- function(){
temp <- fake
model1 <- lmer(data~factor1*factor2 + (1 |subj), data=temp)
model1a <- update(model1, ~.-factor1:factor2, data=temp)
anova(model1, model1a)
}
foo()
I get an error message:
Error in anova(model1, model1b) :
all models must be fit to the same data object
I suppose this error goes beyond update(). But I wonder if anyone knows how this can be resolved. Note that if I write the function without using update() and instead spell out the models (see below), the error above goes away:
foo <- function(){
temp <- fake
model1 <- lmer(data~factor1*factor2 + (1 |subj), data=temp)
model1a <- lmer(data~factor1 + factor2 + (1 |subj), data=temp)
anova(model1, model1a)
}
foo()
Data: temp
Models:
model1a: data ~ factor1 + factor2 + (1 | subj)
model1: data ~ factor1 * factor2 + (1 | subj)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
model1a 5 -4.6909 3.7535 7.3454
model1 6 -8.8005 1.3327 10.4003 6.1097 1 0.01344 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
EDIT 3: It seems that the issue is with anova(). I also tried the suggestion by @hadley
foo2 <- function(){
my_update <- function(mod, formula = NULL, data = NULL) {
call <- getCall(mod)
if (is.null(call)) {
stop("Model object does not support updating (no call)", call. = FALSE)
}
term <- terms(mod)
if (is.null(term)) {
stop("Model object does not support updating (no terms)", call. = FALSE)
}
if (!is.null(data)) call$data <- data
if (!is.null(formula)) call$formula <- update.formula(call$formula, formula)
env <- attr(term, ".Environment")
eval(call, env, parent.frame())}
model1 <- lmer(data~factor1*factor2 + (1 |subj), temp)
model1a <- my_update(model1, ~.-factor1:factor2)
anova(model1, model1a)
}
foo2()
I got an error message as shown below:
Error in as.data.frame.default(data) :
cannot coerce class 'structure("mer", package = "lme4")' into a data.frame
Upvotes: 9
Views: 3139
Reputation: 19454
Although I really like @Hadley's answer (and will likely use that function myself), you can also specify a data
argument in the update
function. (Here, I assumed you wanted to pass temp
to your models.)
model1a <- update(model1, ~.-factor1:factor2, data = temp)
EDIT
If you're looking to compare models with anova
, update
will mung up the name of the data
argument and "trick" anova
into believing that the two models were fit using two different datasets. Updating only the formula and creating a new model will avoid this:
foo <- function(){
temp <- fake
model1 <- lmer(data~factor1*factor2 + (1 |subj), data=temp)
newForm <- update.formula(formula(model1), ~.-factor1:factor2)
model1a <- lmer(newForm, data=temp)
anova(model1, model1a)
}
Upvotes: 4
Reputation: 103898
I've been bitten by this behaviour before too, so I wrote my own version of update
. It evaluates everything in the environment of the formula, so it should be fairly robust.
my_update <- function(mod, formula = NULL, data = NULL) {
call <- getCall(mod)
if (is.null(call)) {
stop("Model object does not support updating (no call)", call. = FALSE)
}
term <- terms(mod)
if (is.null(term)) {
stop("Model object does not support updating (no terms)", call. = FALSE)
}
if (!is.null(data)) call$data <- data
if (!is.null(formula)) call$formula <- update.formula(call$formula, formula)
env <- attr(term, ".Environment")
eval(call, env, parent.frame())
}
library(nlme4)
fake <- data.frame(
subj = rep(1:5, 4),
factor1 = rep(LETTERS[c(1,2,1,2)], each = 5),
factor2 = rep(letters[1:2], each = 10),
data = sort(rlnorm(20)))
foo <- function() {
temp <- fake
model1 <- lmer(data ~ factor1 * factor2 + (1 | subj), fake)
model1a <- my_update(model1, ~ . - factor1:factor2)
model1a
}
foo()
Upvotes: 9