Reputation: 31
I've been trying to use MATLAB to solve equations like this:
B = alpha*Y0*sqrt(epsilon)/(pi*ln(b/a)*sqrt(epsilon_t))*integral from 0 to pi of (2*sinint(k0*sqrt(epsilon*(a^2+b^2-2abcos(theta))-sinint(2*k0*sqrt(epsilon)*a*sin(theta/2))-sinint(2*k0*sqrt(epsilon)*b*sin(theta/2))) with regard to theta
Where epsilon is the unknown.
I know how to symbolically solve equations with unknown embedded in an integral by using int()
and solve()
, but using the symbolic integrator int()
takes too long for equations this complicated. When I try to use quad()
, quadl()
and quadgk()
, I have trouble dealing with how the unknown is embedded in the integral.
Upvotes: 3
Views: 4178
Reputation: 38032
This sort of thing gets complicated real fast. Although it is possible to do it all in a single inline equation, I would advise you to split it up into multiple nested functions, if only for readability.
The best example of why readability is important: you have a bracketing problem in the eqution you posted; there's not enough closing brackets, so I can't be entirely sure what the equation looks like in mathematical notation :)
Anyway, here's one way to do it with the version I --think-- you meant:
function test
% some random values for testing
Y0 = rand;
b = rand;
a = rand;
k0 = rand;
alpha = rand;
epsilon_t = rand;
% D is your B
D = -0.015;
% define SIMPLE anonymous function
Bb = @(ep) F(ep).*main_integral(ep) - D;
% aaaand...solve it!
sol = fsolve(Bb, 1)
% The anonymous function above is only simple, because of these:
% the main integral
function val = main_integral(epsilon)
% we need for loop through epsilon, due to how quad(gk) solves things
val = zeros(size(epsilon));
for ii = 1:numel(epsilon)
ep = epsilon(ii);
% NOTE how the sinint's all have a different function as argument:
val(ii) = quadgk(@(th)...
2*sinint(A(ep,th)) - sinint(B(ep,th)) - sinint(C(ep,th)), ...
0, pi);
end
end
% factor in front of integral
function f = F(epsilon)
f = alpha*Y0*sqrt(epsilon)./(pi*log(b/a)*sqrt(epsilon_t)); end
% first sinint argument
function val = A(epsilon, theta)
val = k0*sqrt(epsilon*(a^2+b^2-2*a*b*cos(theta))); end
% second sinint argument
function val = B(epsilon, theta)
val = 2*k0*sqrt(epsilon)*a*sin(theta/2); end
% third sinint argument
function val = C(epsilon, theta)
val = 2*k0*sqrt(epsilon)*b*sin(theta/2); end
end
The solution above will still be quite slow, but I think that's pretty normal for integrals this complicated.
I don't think implementing your own sinint
will help much, as most of the speed loss is due to the for loops with non-builtin functions...If it's speed you want, I'd go for a MEX implementation with your own Gauss-Kronrod adaptive quadrature routine.
Upvotes: 2