Reputation: 17532
Is there any computational difference between these two methods of checking equality between three objects?
I have two variables: x
and y
. Say I do this:
>>> x = 5
>>> y = 5
>>> x == y == 5
True
Is that different from:
>>> x = 5
>>> y = 5
>>> x == y and x == 5
True
What about if they are False
?
>>> x = 5
>>> y = 5
>>> x == y == 4
False
And:
>>> x = 5
>>> y = 5
>>> x == y and x == 4
False
Is there any difference in how they are calculated?
In addition, how does x == y == z
work?
Thanks in advance!
Upvotes: 10
Views: 1755
Reputation: 10430
Adding a little visual demonstration to already accepted answer.
For testing equality of three values or variables. We can either use:
>>> print(1) == print(2) == print(3)
1
2
3
True
>>> print(1) == print(2) and print(2) == print(3)
1
2
2
3
True
The above statements are equivalent but not equal to, since accesses are only performed once. Python chains relational operators naturally. See this docs:
Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).
If the functions called (and you are comparing return values) have no side-effects, then the two ways are same.
In both examples, the second comparison will not be evaluated if the first one evaluates to false. However: beware of adding parentheses. For example:
>>> 1 == 2 == 0
False
>>> (1 == 2) == 0
True
See this answer.
Upvotes: 0
Reputation: 375484
Python has chained comparisons, so these two forms are equivalent:
x == y == z
x == y and y == z
except that in the first, y is only evaluated once.
This means you can also write:
0 < x < 10
10 >= z >= 2
etc. You can also write confusing things like:
a < b == c is d # Don't do this
Beginners sometimes get tripped up on this:
a < 100 is True # Definitely don't do this!
which will always be false since it is the same as:
a < 100 and 100 is True # Now we see the violence inherent in the system!
Upvotes: 18