Reputation: 4259
I am very new to cuda and started reading about parallel programming and cuda just a few weeks ago. After I installed the cuda toolkit, I was browsing the sdk samples (which come with the installation of the toolkit) and wanted to try some of them out. I started with matrixMul
from 0_Simple folder. This program executes fine (I am using Visual Studio 2010).
Now I want to change the size of the matrices and try with a bigger one (for example 960X960 or 1024x1024). In this case, something crashes (I get black screen, and then the message: display driver stopped responding and has recovered).
I am changing this two lines in the code (from main function):
dim3 dimsA(8*4*block_size, 8*4*block_size, 1);
dim3 dimsB(8*4*block_size, 8*4*block_size, 1);
before they were:
dim3 dimsA(5*2*block_size, 5*2*block_size, 1);
dim3 dimsB(5*2*block_size, 5*2*block_size, 1);
Can someone point to me what I am doing wrong. and should I alter something else in this example for it to work properly. Thx!
Edit: like some of you suggested, i changed the timeout value (0 somehow did not work for me, I set the timeout to 60), so my driver does not crash, but I get huge list of errors, like: ... ... ...
Error! Matrix[409598]=6.40005159, ref=6.39999986 error term is > 1e-5
Error! Matrix[409599]=6.40005159, ref=6.39999986 error term is > 1e-5
Does this got something to do with the allocation of the memory. Should I make changes there and what could they be?
Upvotes: 2
Views: 1333
Reputation: 1599
Your new problem is actually just the strict tolerances provided in the NVidia example. Your kernel is running correctly. It's just complaining that accumluated error is greater than the limit that they had set for this example. This is just because you're doing a lot more math operations which are all accumulating error. If you look at the numbers it's giving you, you're only off of the reference answer by about 0.00005, which is not unusual after a lot of single-precision floating-point math. The reason you're getting these errors now and not with the default matrix sizes is that the original matricies were smaller and thus required a lot less operations to multiply. Matrix multiplication of N x N matricies requires on the order of N^3 operations, so the number of operations required increases much faster than the size of the matrix and the accumulated error would increase in proportion with the number of operations.
If you look near the end of the runTest() function, there's a call to computeGold() which computes the reference answer on your CPU. There should then be a call to something like shrCompareL2fe that compares the results. The last parameter to this is a tolerance. If you increase the size of this tolerance (say, to 1e-3 or 1e-4 instead of 1e-5,) you should eliminate these error messages. Note that there may be a couple of these calls. The version of the SDK examples that I have has an optional CUBLAS implementation, so it has a comparison for that against the gold, too. The one right after the print statement that says "Comparing CUDA matrixMul & Host results" is the one you'd want to change.
Upvotes: 2
Reputation: 1599
Have you disabled Timeout Detection and Recovery (TDR) in Windows? It is entirely possible that your code is running fine but that the larger matricies caused the kernel execution to exceed Windows' timeout, which causes Windows to assume the card is locked up, so it resets the card and gives you a message identical to the one you describe. Even if that is not your problem here, you definitely want to disable that before doing any serious CUDA work in Windows. The timeout is quite short by default, since normal graphics rendering should take small fractions of a second per frame.
See this post on the NVidia forums that describes TDR and how to turn it off:
WDDM TDR - NVidia devtalk forum
In particular, you probably want to set the key HKLM\System\CurrentControlSet\Control\GraphicsDrivers\TdrLevel to 0 (Detection Disabled).
Alternatively, you can increase the timeout period by setting HKLM\System\CurrentControlSet\Control\GraphicsDrivers\TdrDelay. It defaults to 2 and is specified in seconds. Personally, I have found that TDR is always annoying when doing work in CUDA, so I just turn it off entirely. IIRC, you need to restart your system for any TDR-related changes to take effect.
Upvotes: 2
Reputation: 4194
I'd advise looking at the indexing used in the kernel (matrixMulCUDA) a bit closer - it sounds like you're writing to unallocated memory.
More specifically, is the only thing that you changed the dimsA and dimsB variables? Inside the kernel they use the thread and block index to access the data - did you also increase the data size accordingly? There is no bounds checking going on in the kernel, so if you just change the kernel launch configuration, but not the data, then odds are you're writing past your data into some other memory
Upvotes: 2