Reputation: 6039
Very similar complexity examples. I am trying to understand as to how these questions vary. Exam coming up tomorrow :( Any shortcuts for find the complexities here.
CASE 1:
void doit(int N) {
while (N) {
for (int j = 0; j < N; j += 1) {}
N = N / 2;
}
}
CASE 2:
void doit(int N) {
while (N) {
for (int j = 0; j < N; j *= 4) {}
N = N / 2;
}
}
CASE 3:
void doit(int N) {
while (N) {
for (int j = 0; j < N; j *= 2) {}
N = N / 2;
}
}
Thank you so much!
Upvotes: 1
Views: 183
Reputation: 178431
You already have the answer to number 1 - O(n)
, as given by @NickO, here is an alternative explanation.
Denote the number of outer repeats of inner loop by T(N), and let the number of outer loops be h
. Note that h = log_2(N)
T(N) = N + N/2 + ... + N / (2^i) + ... + 2 + 1
< 2N (sum of geometric series)
in O(N)
Number 3: is O((logN)^2)
Denote the number of outer repeats of inner loop by T(N), and let the number of outer loops be h
. Note that h = log_2(N)
T(N) = log(N) + log(N/2) + log(N/4) + ... + log(1) (because log(a*b) = log(a) + log(b)
= log(N * (N/2) * (N/4) * ... * 1)
= log(N^h * (1 * 1/2 * 1/4 * .... * 1/N))
= log(N^h) + log(1 * 1/2 * 1/4 * .... * 1/N) (because log(a*b) = log(a) + log(b))
< log(N^h) + log(1)
= log(N^h) (log(1) = 0)
= h * log(N) (log(a^b) = b*log(a))
= (log(N))^2 (because h=log_2(N))
Number 2 is almost identical to number 3.
(In 2,3: assuming j
starts from 1, not from 0, if this is not the case @WhozCraig giving the reason why it never breaks)
Upvotes: 3
Reputation: 741
void doit(int N) {
while (N) {
for (int j = 0; j < N; j += 1) {}
N = N / 2;
}
}
To find the O() of this, notice that we are dividing N by 2 each iteration. So, (not to insult your intelligence, but for completeness) the final non-zero iteration through the loop we will have N=1. The time before that we will have N=a(2), then before that N=a(4)... where 0< a < N (note those are non-inclusive bounds). So, this loop will execute a total of log(N) times, meaning the first iteration we see that N=a2^(floor(log(N))).
Why do we care about that? Well, it's a geometric series which has a nice closed form:
Sum = \sum_{k=0}^{\log(N)} a2^k = a*\frac{1-2^{\log N +1}}{1-2} = 2aN-a = O(N).
If someone can figure out how to get that latexy notation to display correctly for me I would really appreciate it.
Upvotes: 4