Reputation: 839
In this homework i need to complete the code to multiply two rectangle matrices using CUDA C. After I completed the code, I submitted and the solution was correct for the data set when the matrices were square, while the result wasn't matching the expected value when the matrices were not square.
Here is the code after I added the missing parts:
#include <wb.h>
#define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
return -1; \
} \
} while(0)
// Compute C = A * B
__global__ void matrixMultiply(float * A, float * B, float * C,
int numARows, int numAColumns,
int numBRows, int numBColumns,
int numCRows, int numCColumns) {
//@@ Insert code to implement matrix multiplication here
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if (numAColumns != numBRows) return ;
if ((Row < numARows) && (Col < numBColumns)){
float Cvalue = 0;
for (int k = 0 ; k < numAColumns ; ++k )
Cvalue += A[Row*numAColumns + k] * B[k * numBRows + Col];
C[Row*numAColumns + Col] = Cvalue;
}
}
int main(int argc, char ** argv) {
wbArg_t args;
float * hostA; // The A matrix
float * hostB; // The B matrix
float * hostC; // The output C matrix
float * deviceA;
float * deviceB;
float * deviceC;
int numARows; // number of rows in the matrix A
int numAColumns; // number of columns in the matrix A
int numBRows; // number of rows in the matrix B
int numBColumns; // number of columns in the matrix B
int numCRows; // number of rows in the matrix C (you have to set this)
int numCColumns; // number of columns in the matrix C (you have to set this)
args = wbArg_read(argc, argv);
wbTime_start(Generic, "Importing data and creating memory on host");
hostA = (float *) wbImport(wbArg_getInputFile(args, 0), &numARows, &numAColumns);
hostB = (float *) wbImport(wbArg_getInputFile(args, 1), &numBRows, &numBColumns);
//@@ Set numCRows and numCColumns
numCRows = 0;
numCColumns = 0;
numCRows = numARows;
numCColumns = numBColumns;
//@@ Allocate the hostC matrix
hostC = (float*) malloc(sizeof(float)*numCRows*numCColumns);
wbTime_stop(Generic, "Importing data and creating memory on host");
wbLog(TRACE, "The dimensions of A are ", numARows, " x ", numAColumns);
wbLog(TRACE, "The dimensions of B are ", numBRows, " x ", numBColumns);
wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
cudaMalloc((void**)&deviceA ,sizeof(float)*numARows*numAColumns );
cudaMalloc((void**)&deviceB , sizeof(float)*numBRows*numBColumns);
cudaMalloc((void**)&deviceC , sizeof(float)*numCRows*numCColumns);
wbTime_stop(GPU, "Allocating GPU memory.");
wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
cudaMemcpy(deviceA, hostA, sizeof(float)*numARows*numAColumns, cudaMemcpyHostToDevice);
cudaMemcpy(deviceB, hostB, sizeof(float)*numBRows*numBColumns, cudaMemcpyHostToDevice);
wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
dim3 DimGrid(numARows / 8 , numBColumns / 8, 1);
dim3 DimBlock(8 , 8, 1);
wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
matrixMultiply<<<DimGrid , DimBlock>>>(deviceA , deviceB , deviceC , numARows , numAColumns, numBRows ,numBColumns , numCRows , numCColumns);
cudaThreadSynchronize();
wbTime_stop(Compute, "Performing CUDA computation");
wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
cudaMemcpy(hostC, deviceC, sizeof(float)*numCRows*numCColumns , cudaMemcpyDeviceToHost);
wbTime_stop(Copy, "Copying output memory to the CPU");
wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
cudaFree(deviceA);
cudaFree(deviceB);
cudaFree(deviceC);
wbTime_stop(GPU, "Freeing GPU Memory");
wbSolution(args, hostC, numCRows, numCColumns);
free(hostA);
free(hostB);
free(hostC);
return 0;
}
I hope you can help me to find which part is incorrect.
Upvotes: 6
Views: 5149
Reputation: 839
we can use tiled matrix multiplication and i found it has a better execution time .
#include <wb.h>
#define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
return -1; \
} \
} while(0)
// Compute C = A * B
__global__ void matrixMultiplyShared(float * A, float * B, float * C,
int numARows, int numAColumns,
int numBRows, int numBColumns,
int numCRows, int numCColumns) {
//@@ Insert code to implement matrix multiplication here
//@@ You have to use shared memory for this MP
const int TILE_WIDTH = 32;
__shared__ float sharedA[TILE_WIDTH][TILE_WIDTH];
__shared__ float sharedB[TILE_WIDTH][TILE_WIDTH];
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int Row = by*TILE_WIDTH + ty;
int Col = bx*TILE_WIDTH + tx;
float Cvalue = 0.0;
if (numAColumns != numBRows) return ;
for (int i = 0; i < (int)(ceil((float)numAColumns/TILE_WIDTH)); i++)
{
if (i*TILE_WIDTH + tx < numAColumns && Row < numARows){
sharedA[ty][tx] = A[Row*numAColumns + i*TILE_WIDTH + tx];
}else{
sharedA[ty][tx] = 0.0;
}
if (i*TILE_WIDTH + ty < numBRows && Col < numBColumns){
sharedB[ty][tx] = B[(i*TILE_WIDTH + ty)*numBColumns + Col];
}else{
sharedB[ty][tx] = 0.0;
}
__syncthreads();
if(Row < numARows && Col < numBColumns){
for(int j = 0; j < TILE_WIDTH; j++)
Cvalue += sharedA[ty][j] * sharedB[j][tx];
}
__syncthreads();
}
if (Row < numCRows && Col < numCColumns)
C[Row*numCColumns + Col] = Cvalue;
}
int main(int argc, char ** argv) {
wbArg_t args;
float * hostA; // The A matrix
float * hostB; // The B matrix
float * hostC; // The output C matrix
float * deviceA;
float * deviceB;
float * deviceC;
int numARows; // number of rows in the matrix A
int numAColumns; // number of columns in the matrix A
int numBRows; // number of rows in the matrix B
int numBColumns; // number of columns in the matrix B
int numCRows; // number of rows in the matrix C (you have to set this)
int numCColumns; // number of columns in the matrix C (you have to set this)
int TILE_WIDTH = 32;
args = wbArg_read(argc, argv);
wbTime_start(Generic, "Importing data and creating memory on host");
hostA = (float *) wbImport(wbArg_getInputFile(args, 0), &numARows, &numAColumns);
hostB = (float *) wbImport(wbArg_getInputFile(args, 1), &numBRows, &numBColumns);
//@@ Set numCRows and numCColumns
numCRows = 0;
numCColumns = 0;
numCRows = numARows;
numCColumns = numBColumns;
//@@ Allocate the hostC matrix
hostC = (float*) malloc(sizeof(float)*numCRows*numCColumns);
wbTime_stop(Generic, "Importing data and creating memory on host");
wbLog(TRACE, "The dimensions of A are ", numARows, " x ", numAColumns);
wbLog(TRACE, "The dimensions of B are ", numBRows, " x ", numBColumns);
wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
cudaMalloc((void**)&deviceA , sizeof(float)*numARows*numAColumns );
cudaMalloc((void**)&deviceB , sizeof(float)*numBRows*numBColumns);
cudaMalloc((void**)&deviceC , sizeof(float)*numCRows*numCColumns);
wbTime_stop(GPU, "Allocating GPU memory.");
wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
cudaMemcpy(deviceA, hostA, sizeof(float)*numARows*numAColumns, cudaMemcpyHostToDevice);
cudaMemcpy(deviceB, hostB, sizeof(float)*numBRows*numBColumns, cudaMemcpyHostToDevice);
wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
int dimX = (int)(ceil((float)numCColumns / TILE_WIDTH));
int dimY = (int)(ceil((float)numCRows / TILE_WIDTH));
dim3 DimGrid(dimX, dimY);
dim3 DimBlock(TILE_WIDTH, TILE_WIDTH);
wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
matrixMultiplyShared<<<DimGrid , DimBlock>>>(deviceA , deviceB , deviceC , numARows , numAColumns, numBRows ,numBColumns , numCRows , numCColumns);
cudaThreadSynchronize();
wbTime_stop(Compute, "Performing CUDA computation");
wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
cudaMemcpy(hostC, deviceC, sizeof(float)*numCRows*numCColumns , cudaMemcpyDeviceToHost);
wbTime_stop(Copy, "Copying output memory to the CPU");
wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
cudaFree(deviceA);
cudaFree(deviceB);
cudaFree(deviceC);
wbTime_stop(GPU, "Freeing GPU Memory");
wbSolution(args, hostC, numCRows, numCColumns);
free(hostA);
free(hostB);
free(hostC);
return 0;
}
Upvotes: 1
Reputation: 839
After the help of Ira, Ahmad, ram, and Oli Fly, I got the correct answer as follows:
#include <wb.h>
#define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
return -1; \
} \
} while(0)
// Compute C = A * B
__global__ void matrixMultiply(float * A, float * B, float * C,
int numARows, int numAColumns,
int numBRows, int numBColumns,
int numCRows, int numCColumns) {
//@@ Insert code to implement matrix multiplication here
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if (numAColumns != numBRows) return;
if ((Row < numARows) && (Col < numBColumns)){
float Cvalue = 0;
for (int k = 0; k < numAColumns; ++k)
Cvalue += A[Row*numAColumns + k] * B[k * numBColumns + Col];
C[Row*numCColumns + Col] = Cvalue;
}
}
int main(int argc, char ** argv) {
wbArg_t args;
float * hostA; // The A matrix
float * hostB; // The B matrix
float * hostC; // The output C matrix
float * deviceA;
float * deviceB;
float * deviceC;
int numARows; // number of rows in the matrix A
int numAColumns; // number of columns in the matrix A
int numBRows; // number of rows in the matrix B
int numBColumns; // number of columns in the matrix B
int numCRows; // number of rows in the matrix C (you have to set this)
int numCColumns; // number of columns in the matrix C (you have to set this)
args = wbArg_read(argc, argv);
wbTime_start(Generic, "Importing data and creating memory on host");
hostA = (float *) wbImport(wbArg_getInputFile(args, 0), &numARows, &numAColumns);
hostB = (float *) wbImport(wbArg_getInputFile(args, 1), &numBRows, &numBColumns);
//@@ Set numCRows and numCColumns
numCRows = 0;
numCColumns = 0;
numCRows = numARows;
numCColumns = numBColumns;
//@@ Allocate the hostC matrix
hostC = (float*) malloc(sizeof(float)*numCRows*numCColumns);
wbTime_stop(Generic, "Importing data and creating memory on host");
wbLog(TRACE, "The dimensions of A are ", numARows, " x ", numAColumns);
wbLog(TRACE, "The dimensions of B are ", numBRows, " x ", numBColumns);
wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
cudaMalloc((void**)&deviceA ,sizeof(float)*numARows*numAColumns );
cudaMalloc((void**)&deviceB , sizeof(float)*numBRows*numBColumns);
cudaMalloc((void**)&deviceC , sizeof(float)*numCRows*numCColumns);
wbTime_stop(GPU, "Allocating GPU memory.");
wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
cudaMemcpy(deviceA, hostA, sizeof(float)*numARows*numAColumns, cudaMemcpyHostToDevice);
cudaMemcpy(deviceB, hostB, sizeof(float)*numBRows*numBColumns, cudaMemcpyHostToDevice);
wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
dim3 DimGrid((numCColumns - 1) / 8 + 1, (numCRows - 1) / 8 + 1, 1);
dim3 DimBlock(8 , 8, 1);
wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
matrixMultiply<<<DimGrid , DimBlock>>>(deviceA , deviceB , deviceC , numARows , numAColumns, numBRows ,numBColumns , numCRows , numCColumns);
cudaThreadSynchronize();
wbTime_stop(Compute, "Performing CUDA computation");
wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
cudaMemcpy(hostC, deviceC, sizeof(float)*numCRows*numCColumns , cudaMemcpyDeviceToHost);
wbTime_stop(Copy, "Copying output memory to the CPU");
wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
cudaFree(deviceA);
cudaFree(deviceB);
cudaFree(deviceC);
wbTime_stop(GPU, "Freeing GPU Memory");
wbSolution(args, hostC, numCRows, numCColumns);
free(hostA);
free(hostB);
free(hostC);
return 0;
}
Upvotes: 4
Reputation: 21
replace
Cvalue += A[Row*numAColumns + k] * B[k * numBRows + Col];
for
Cvalue += A[Row*numAColumns +k]* B[k*numBColumns+Col];
and
C[Row*numAColumns + Col] = Cvalue;
for
C[Row*numCColumns+Col] = Cvalue;
Upvotes: 2
Reputation: 31
Replace :
for (int k = 0 ; k < numAColumns ; ++k )
Cvalue += A[Row*numAColumns + k] * B[k * numBRows + Col];
C[Row*numAColumns + Col] = Cvalue;
}
with
for (int k = 0 ; k < numAColumns ; ++k )
Cvalue += A[Row*numAColumns + k] * B[k * numBColumns + Col];
C[Row*numCColumns + Col] = Cvalue;
}
Upvotes: 3
Reputation: 5470
Replace :
Cvalue += A[Row*numAColumns + k] * B[k * numBRows + Col];
with
Cvalue += A[Row*numAColumns + k] * B[k * numBColumns + Col];
Upvotes: 2