Reputation: 6180
To avoid any confusions I am re framing my question based on my research on hashing algorithms
Problem statement I have multiple text files containing variable length data records. I need find if there are duplicate records in the input. Each of the text files could have data records in millions.
Since I cannot load all the data in memory at once, I plan to create a hash of the key fields in the record when it is processed. Processing a record would mean validating, filtering and transforming it. After processing all the records in all the text files, they are merged to create one view of the whole input (either a text file or a database table).
Finding duplicates would be much faster if a hash value is generated for all the records. If there are collisions of hash values, only those records could be checked for equality (assuming the hashing algorithm is deterministic)
Question - What hash algorithms should I consider for such input i.e. variable length data?
Upvotes: 2
Views: 1736
Reputation: 26185
This is an extension to the Map idea. Before resorting to this I would check that it cannot be done by simply building a HashSet representing all the strings at once. Remember you can use a 64-bit JVM and set a large heap size.
Define a class StringLocation that contains the data you would need to do a random access to a string on disk - for example, a reference to a RandomAcessFile and an offset within file. If you cannot keep all the files open at once, open and close as needed, caching the RandomAcessFile for the most used files.
Create a HashMap<Integer,List<StringLocation>>
.
Start reading the strings. For each string, convert to lower case and obtain its hashCode(), hash, in Integer form. If there is an entry in the Map with hash as key, compare the new string to each string represented in the existing value, doing random file access to get to the already processed strings. Use the String equalsIgnoreCase. If there is a match, you have a duplicate. If there is no match, append a new StringLocation, representing the current string, to the List.
This requires at most two strings to be in memory at a time, the one you are currently processing and a previously processed string with the same hashCode() result to which you are comparing it.
You can further reduce the number of times you have to re-read a string for an equals check by using MessageDigest to generate, for the lower case string, a wide checksum with low risk of collisions, and saving it in the StringLocation object. During a comparison, return false if the checksums do not match, without re-reading the strings.
Upvotes: 1
Reputation: 3830
Short Answer
Don't do it. Use the Java map. You can find details here: http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
Long Answer
You can create a perfect hashing function by treating your string as a number in base-N where N is all of the possible values any character can take on. The problem here is memory. Hashing functions are meant to be used with arrays, which means you'll need an array large enough to handle the results of your hash, and that is impractical.
For instance, take a modest example of a 10 character key. Let's be even more modest and assume they are guaranteed to consist solely of lower-case letters. That gives you 26 possibilities for each character, and 10 characters. This means the possible combinations are:
26 ^ 10 = 141,167,095,653,376
If you look up hashing algorithms, one of the first things they include is collision detection because they acknowledge that collisions are a fact of life.
Now you say you are not loading keys in memory, yet why are you using a hash then? The point of a hash is to give you a mapping onto an array index. Perhaps you're better off using another mechanism.
Possible Solutions
If you are concerned about memory, get some statistics on the duplicates in your file. If you only store a flag to indicate the occurrence of a particular key in the hash, and you have many duplicates, you may be able to just use Java's map. Java's map handles collisions, so that won't keep you from detecting unique keys. You can rest assured that if A[x] is found, that means x is in A, even if x's hash collided with a previous hash.
Next, you could try some utilities to pull out duplicates. Since they would have been written specifically for the purpose, they should be able to handle a large amount of data.
Finally, you could try putting your entries into a database and using that to handle duplicates. This may seem like overkill, but databases are optimized for dealing with very large numbers of records.
Upvotes: 4