Reputation: 57
In C# I created a list array containing a list of varied indexes. I'd like to display 1 combination of 2 combinations of different indexes. The 2 combinations inside the one must not be repeated.
I am trying to code a tennis tournament with 14 players that pair. Each player must never be paired with another player twice.
Upvotes: 3
Views: 465
Reputation: 3837
Your problem falls under the domain of the binomial coefficient. The binomial coefficient handles problems of choosing unique combinations in groups of K with a total of N items.
I have written a class in C# to handle common functions for working with the binomial coefficient. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters.
Converts the K-indexes to the proper index of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle and is very efficient compared to iterating over the set.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes. I believe it is also faster than older iterative solutions.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to use the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
There are 2 different ways to interpret your problem. In tennis, tournaments are usually arranged to use single elmination where the winning player from each match advances. However, some local clubs also use round robins where each player plays each other player just once, which appears to be the problem that you are looking at.
So, the question is - how to calculate the total number of unique matches that can be played with 14 players (N = 14), where each player plays just one other player (and thus K = 2). The binomial coefficient calculation is as follows:
Total number of unique combinations = N! / (K! * (N - K)! ). The ! character is called a factorical, and means N * (N-1) * (N-2) ... * 1. When K is 2, the binomial coefficient is reduced to: N * (N - 1) / 2. So, plugging in 14 for N and 2 for K, we find that the total number of combinations is 91.
The following code will iterate through each uniue combinations:
int N = 14; // Total number of elements in the set.
int K = 2; // Total number of elements in each group.
// Create the bin coeff object required to get all
// the combos for this N choose K combination.
BinCoeff<int> BC = new BinCoeff<int>(N, K, false);
int NumCombos = BinCoeff<int>.GetBinCoeff(N, K);
// The Kindexes array specifies the 2 players, starting with index 0.
int[] KIndexes = new int[K];
// Loop thru all the combinations for this N choose K case.
for (int Combo = 0; Combo < NumCombos; Combo++)
{
// Get the k-indexes for this combination.
BC.GetKIndexes(Loop, KIndexes);
// KIndex[0] is the first player & Kindex[2] is the 2nd player.
// Print out the indexes for both players.
String S = "Player1 = Kindexes[0].ToString() + ", " +
"Player2 = Kindexes[1].ToString();
Console.WriteLine(S};
}
You should be able to port this class over fairly easily to the language of your choice. You probably will not have to port over the generic part of the class to accomplish your goals. Depending on the number of combinations you are working with, you might need to use a bigger word size than 4 byte ints.
I should also mention, that since this is a class project, your teacher might not accept the above answer since he might be looking for more original work. In that case, you might want to consider using loops. You should check with him before submitting a solution.
Upvotes: 2