Reputation: 17348
In the nlme package there are two functions for fitting linear models (lme and gls).
Update: Added bounty. Interested to know differences in the fitting process, and the rational.
Upvotes: 24
Views: 23191
Reputation: 1345
Interesting question.
In principle the only difference is that gls can't fit models with random effects, whereas lme can. So the commands
fm1 <- gls(follicles ~ sin(2*pi*Time)+cos(2*pi*Time),Ovary,
correlation=corAR1(form=~1|Mare))
and
lm1 <- lme(follicles~sin(2*pi*Time)+cos(2*pi*Time),Ovary,
correlation=corAR1(form=~1|Mare))
ought to give the same result but they don't. The fitted parameters differ slightly.
Upvotes: 4
Reputation: 121057
From Pinheiro & Bates 2000, Section 5.4, p250:
The gls function is used to fit the extended linear model, using either maximum likelihood, or restricted maximum likelihood. It can be veiwed as an lme function without the argument random.
For further details, it would be instructive to compare the lme
analysis of the orthodont dataset (starting on p147 of the same book) with the gls
analysis (starting on p250). To begin, compare
orth.lme <- lme(distance ~ Sex * I(age-11), data=Orthodont)
summary(orth.lme)
Linear mixed-effects model fit by REML
Data: Orthodont
AIC BIC logLik
458.9891 498.655 -214.4945
Random effects:
Formula: ~Sex * I(age - 11) | Subject
Structure: General positive-definite
StdDev Corr
(Intercept) 1.7178454 (Intr) SexFml I(-11)
SexFemale 1.6956351 -0.307
I(age - 11) 0.2937695 -0.009 -0.146
SexFemale:I(age - 11) 0.3160597 0.168 0.290 -0.964
Residual 1.2551778
Fixed effects: distance ~ Sex * I(age - 11)
Value Std.Error DF t-value p-value
(Intercept) 24.968750 0.4572240 79 54.60945 0.0000
SexFemale -2.321023 0.7823126 25 -2.96687 0.0065
I(age - 11) 0.784375 0.1015733 79 7.72226 0.0000
SexFemale:I(age - 11) -0.304830 0.1346293 79 -2.26421 0.0263
Correlation:
(Intr) SexFml I(-11)
SexFemale -0.584
I(age - 11) -0.006 0.004
SexFemale:I(age - 11) 0.005 0.144 -0.754
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.96534486 -0.38609670 0.03647795 0.43142668 3.99155835
Number of Observations: 108
Number of Groups: 27
orth.gls <- gls(distance ~ Sex * I(age-11), data=Orthodont)
summary(orth.gls)
Generalized least squares fit by REML
Model: distance ~ Sex * I(age - 11)
Data: Orthodont
AIC BIC logLik
493.5591 506.7811 -241.7796
Coefficients:
Value Std.Error t-value p-value
(Intercept) 24.968750 0.2821186 88.50444 0.0000
SexFemale -2.321023 0.4419949 -5.25124 0.0000
I(age - 11) 0.784375 0.1261673 6.21694 0.0000
SexFemale:I(age - 11) -0.304830 0.1976661 -1.54214 0.1261
Correlation:
(Intr) SexFml I(-11)
SexFemale -0.638
I(age - 11) 0.000 0.000
SexFemale:I(age - 11) 0.000 0.000 -0.638
Standardized residuals:
Min Q1 Med Q3 Max
-2.48814895 -0.58569115 -0.07451734 0.58924709 2.32476465
Residual standard error: 2.256949
Degrees of freedom: 108 total; 104 residual
Notice that the estimates of the fixed effects are the same (to 6 decimal places), but the standard errors are different, as is the correlation matrix.
Upvotes: 28