Reputation: 2065
Okay, here's a weird one that I'm having problems with (compiled with gcc btw)
Below is source for a Mandelbrot fractal generator for command prompt. I've done this before and I wanted to speed test myself to see how fast I could produce the code required to actually generate a Mandelbrot fractal in the command prompt. Every so often I do this to kinda test myself out for fun
Anyways I've run into a new problem and I can't quite figure out what the issue is. When the fractal renders no matter how many iterations or what escapeValue I set it will ALWAYS appear as an oval! Its NOT supposed to do that.
For all you mandelbrot/cpp geeks out there can you help me identify why I'm not getting more of a 'mandelbrot' shape?
#include <stdio.h>
#include <math.h>
#define DOSWidth 80
#define DOSHeight 25
int iterations = 1024;
float escapeValue = 3.0f;
struct ivar {
ivar(float _x, float _i) {
x = _x;
i = _i;
}
void log() {printf("(%g%c%gi)", x, (i<0)?'-':'+', fabs(i));}
float magnitude() {return sqrtf(x*x+i*i);}
ivar square() {return ivar(x, i)*ivar(x, i);}
ivar operator + (ivar v) {return ivar(x+v.x, i+v.i);};
ivar operator - (ivar v) {return ivar(x-v.x, i-v.i);};
ivar operator * (ivar v) {return ivar(x*v.x-(i*v.i), x*v.i+i*v.x);};
float x, i;
};
struct rect {
rect(float _x, float _y, float _width, float _height) {
x = _x;y = _y;width = _width;height = _height;
}
void setCenter(float cx, float cy) {
x = cx-width/2.0f;
y = cy-width/2.0f;
}
void log() {printf("(%f, %f, %f, %f)", x, y, width, height);}
float x, y;
float width, height;
};
int main() {
rect region = rect(0, 0, 2.5f, 2.0f);
region.setCenter(0, 0);
float xSize = region.width / (float)DOSWidth;
float ySize = region.height / (float)DOSHeight;
for(int y=0;y<DOSHeight;y++) {
for(int x=0;x<DOSWidth;x++) {
ivar pos = ivar(x*xSize+region.x, y*ySize+region.y);
bool escapes = false;
for(int i=0;i<iterations;i++) {
if(pos.magnitude() > escapeValue) {
escapes = true;
break;
}
pos = pos.square();
}
if(escapes)printf(" ");
else printf("X");
}
}
}
Thanks if you got this far, appreciate your help!
Upvotes: 2
Views: 571
Reputation: 137830
You're just recursively squaring pos
until its magnitude exceeds the limit. That won't produce a fractal; it will produce a unit circle.
You need to add the (x,y) coordinates to the squared value after every iteration. See Wikipedia.
EDIT: A couple small changes and voila.
Upvotes: 3