Reputation: 1255
I am conducting a Bayesian analysis using Winbugs from R. I need to combine two Winbugs scripts into one: however, I am receiving an error message (Variable x2 is not defined in model or in data set
). Here is the winbugs code:
model{
# Model’s likelihood
for (i in 1:n) {
tto[i] ~ dnorm( mu[i], tau ) # stochastic componenent
b[i] ~ dnorm(0.0, tau2)
# link and linear predictor
mu[i] <- 1 - (beta.concern2*concern2[i] + beta.concern3*concern3[i] + b[i])
}
for (i in 1:1002) {
# Linear regression on logit
logit(p[i]) <- beta.concern2*x2[i,1] + beta.concern2*x2[i,2]
# Likelihood function for each data point
y2[i] ~ dbern(p[i])
}
s2<-1/tau
s <-sqrt(s2)
a2<-1/tau2
a <-sqrt(a2)
}
where x2
is a 1002*2 matrix and y
is a vector
This is the R code definining the data:
combined.data <- list(n=n,tto=tto,concern2=concern2,
concern3=concern3,y2=y2, x2=x2)
Anyone know what is wrong?
Upvotes: 2
Views: 1889
Reputation: 5274
I'm going to be making quite a few assumptions here...
Perhaps you could add a diagram illustrating the relationships between the variables, and which are deterministic vs stochastic. I find this helpful when making models in BUGS. Also, it would be helpful to have the dimensions of all your data, the meaning of n
and perhaps some context or detail on what you're modelling and the nodes in which you're interested.
I'm guessing that y
is a binary (0,1) vector of length 1002, and has corresponding values for x2[,1]
and x2[,2]
(herein x1
, x2
) and concern2
, concern3
(herein c2
, c3
) and tto
i.e.
nrow(x2) == 1002
Here's some sample data with of nrow==10
to work with:
y <- sample(x=c(0,1), size=10, replace=TRUE, prob=c(0.5,0.5))
x2 <- matrix(rnorm(20), nrow=10, ncol=2)
c2 <- rnorm(10)
c3 <- rnorm(10)
tto <- rnorm(10)
It appears that you're trying to determine the values of beta.concern2
(herein b2
) for both values of x2
in the logit. Not sure why you'd want to fit it with the same parameter for two different predictors. In case this is a typo I'm giving b2
and b3
as parameters instead. I hope you'll be able to adapt this to your needs.
The product of these values of b2
, b3
(stochastic) and c2
, c3
(given) are used to generate a variable mu
, which also has an error term. (I'm presuming b[i]
(herein b1[i]
) is a normally distributed error term.)
Then tto
is a normally distributed variable which depends on the value of mu
, and itself has an error term. I have set the precision of the error terms as being equal in both cases.
So for such a model:
require(rjags)
### The data
dataList <- list(
x1 = x2[,1],
x2 = x2[,2],
y = y,
c2 = c2,
c3 = c3,
tto = tto,
nRowX = nrow(x2)
)
### make sure logistic model can be fitted
f1 <- stats::glm(dataList$y ~ dataList$x1 + dataList$x2 -1, family=binomial(logit))
show(f1)
### set some approximate initial values
b1Init <- 0.1 # arbitrary
b2Init <- f1$coef[2]
b3Init <- f1$coef[3]
initsList <- list(
b1 = b1Init,
b2 = b2Init,
b3 = b3Init)
### Model: varying parameters (b2, b3) per observation; 2x error terms
modelstring <- "
model {
for(i in 1:nRowX){
tto[i] ~ dnorm(mu[i], prec)
mu[i] <- 1 - (b1 + b2*c2[i] + b3*c3[i])
y[i] ~ dbern(L[i]) # L for logit
L[i] <- 1/(1+exp(- ( b2*x1[i] + b3*x2[i]) ))
}
b1 ~ dnorm(0, prec) # precision
prec <- 1/sqrt(SD) # convert to Std Deviation
SD <- 0.5
b2 ~ dnorm(0, 1.4) # arbitrary
b3 ~ dnorm(0, 1.4)
}
"
writeLines(modelstring,con="model.txt")
parameters <- c("b1","b2","b3") # to monitor
adaptSteps <- 1e4 # "tune in" samplers
burnInSteps <- 2e4 # "burn in" samplers
nChains <- 3
numSavedSteps <-2e3
thinSteps <- 1 # Steps to "thin" (1=keep every step).
nPerChain <- ceiling(( numSavedSteps * thinSteps ) / nChains) # Steps per chain
rm(jagsModel) # in case already present
jagsModel <- rjags::jags.model(
"model.txt", data=dataList,
inits=initsList, n.chains=nChains,
n.adapt=adaptSteps)
stats::update(jagsModel, n.iter=burnInSteps)
### MCMC chain
MCMC1 <- as.matrix(rjags::coda.samples(
jagsModel, variable.names=parameters,
n.iter=nPerChain, thin=thinSteps))
### Extract chain values
b2Sample <- as.vector(MCMC1[,grep("b2",colnames(MCMC1))])
Upvotes: 1