Reputation: 15458
I have a dataframe z
and I want to create the new column based on the values of two old columns of z
. Following is the process:
>z<-cbind(x=1:10,y=11:20,t=21:30)
> z<-as.data.frame(z)
>z
x y t
1 1 11 21
2 2 12 22
3 3 13 23
4 4 14 24
5 5 15 25
6 6 16 26
7 7 17 27
8 8 18 28
9 9 19 29
10 10 20 30
# generate the column q
which is equal to the values of column t
times 4 if x=3
and for other values of x
, it is equal to the values of column t
.
for (i in 1:nrow(z)){
z$q[i]=if (z$x[i]==4) 4*z$t[i] else z$t[i]}
But, my problem is that I want to apply multiple conditions:
For example, I want to get something like this:
(If x=2, q=t*2; x=4, q=t*4; x=7, q=t*3; for other it is equal to t)
> z
x y t q
1 1 11 21 21
2 2 12 22 44
3 3 13 23 23
4 4 14 24 96
5 5 15 25 25
6 6 16 26 26
7 7 17 27 81
8 8 18 28 28
9 9 19 29 29
10 10 20 30 30
How do I get the second output using the loops or any other method?
Upvotes: 5
Views: 5601
Reputation: 7109
Here's a version of an SQL decode
in R for character vectors (untested with factors) that operates just like the SQL version. i.e. it takes an arbitrary number of target/replacement pairs, and optional last argument that acts as a default value (note that the default won't overwrite NAs).
I can see it being pretty useful in conjunction with dplyr
's mutate
operation.
> x <- c("apple","apple","orange","pear","pear",NA)
> decode(x, apple, banana)
[1] "banana" "banana" "orange" "pear" "pear" NA
> decode(x, apple, banana, fruit)
[1] "banana" "banana" "fruit" "fruit" "fruit" NA
> decode(x, apple, banana, pear, passionfruit)
[1] "banana" "banana" "orange" "passionfruit" "passionfruit" NA
> decode(x, apple, banana, pear, passionfruit, fruit)
[1] "banana" "banana" "fruit" "passionfruit" "passionfruit" NA
Here's the code I'm using, with a gist I'll keep up to date here (link).
decode <- function(x, ...) {
args <- as.character((eval(substitute(alist(...))))
replacements <- args[1:length(args) %% 2 == 0]
targets <- args[1:length(args) %% 2 == 1][1:length(replacements)]
if(length(args) %% 2 == 1)
x[! x %in% targets & ! is.na(x)] <- tail(args,1)
for(i in 1:length(targets))
x <- ifelse(x == targets[i], replacements[i], x)
return(x)
}
Upvotes: 1
Reputation: 1733
You can do it in
like this:
> transform(z,q=t*sapply(as.character(x),function(x) switch(x,"2"=2,"4"=4,"7"=3,1)))
x y t q
1 1 11 21 21
2 2 12 22 44
3 3 13 23 23
4 4 14 24 96
5 5 15 25 25
6 6 16 26 26
7 7 17 27 81
8 8 18 28 28
9 9 19 29 29
10 10 20 30 30
Upvotes: 2
Reputation: 21532
I really liked the answer "dinre" posted to flodel's blog:
for (i in 1:length(data_Array)){
data_Array[i] <- switch(data_Array[i], banana="apple", orange="pineapple", "fig")
}
With warnings about reading the help page for switch
carefully for integer arguments.
Upvotes: 2
Reputation: 81733
Here is an easy solution with just one ifelse
command:
Calculate the multiplier of t
:
ifelse(z$x == 7, 3, z$x ^ (z$x %in% c(2, 4)))
The complete command:
transform(z, q = t * ifelse(x == 7, 3, x ^ (x %in% c(2, 4))))
x y t q
1 1 11 21 21
2 2 12 22 44
3 3 13 23 23
4 4 14 24 96
5 5 15 25 25
6 6 16 26 26
7 7 17 27 81
8 8 18 28 28
9 9 19 29 29
10 10 20 30 30
Upvotes: 3
Reputation: 487
You can also use match to do this. I tend to use this a lot while assigning parameters like col, pch and cex to points in scatterplots
searchfor<-c(2,4,7)
replacewith<-c(2,4,3)
# generate multiplier column
# q could also be an existing vector where you want to replace certain entries
q<-rep(1,nrow(z))
#
id<-match(z$x,searchfor)
id<-replacewith[id]
# Apply the matches to q
q[!is.na(id)]<-id[!is.na(id)]
# apply to t
z$q<-q*z$t
Upvotes: 1
Reputation: 89097
By building a nested ifelse
functional by recursion, you can get the benefits of both solutions offered so far: ifelse
is fast and can work with any type of data, while @Matthew's solution is more functional yet limited to integers and potentially slow.
decode <- function(x, search, replace, default = NULL) {
# build a nested ifelse function by recursion
decode.fun <- function(search, replace, default = NULL)
if (length(search) == 0) {
function(x) if (is.null(default)) x else rep(default, length(x))
} else {
function(x) ifelse(x == search[1], replace[1],
decode.fun(tail(search, -1),
tail(replace, -1),
default)(x))
}
return(decode.fun(search, replace, default)(x))
}
Note how the decode
function is named after the SQL function. I wish a function like this made it to the base R package... Here are a couple examples illustrating its usage:
decode(x = 1:5, search = 3, replace = -1)
# [1] 1 2 -1 4 5
decode(x = 1:5, search = c(2, 4), replace = c(20, 40), default = 3)
# [1] 3 20 3 40 3
For your particular problem:
transform(z, q = decode(x, search = c(2,4,7), replace = c(2,4,3), default = 1) * t)
# x y t q
# 1 1 11 21 21
# 2 2 12 22 44
# 3 3 13 23 23
# 4 4 14 24 96
# 5 5 15 25 25
# 6 6 16 26 26
# 7 7 17 27 81
# 8 8 18 28 28
# 9 9 19 29 29
# 10 10 20 30 30
Upvotes: 10
Reputation: 15458
Based on the suggestion of Señor :
> z$q <- ifelse(z$x == 2, z$t * 2,
ifelse(z$x == 4, z$t * 4,
ifelse(z$x == 7, z$t * 3,
z$t * 1)))
> z
x y t q
1 1 11 21 21
2 2 12 22 44
3 3 13 23 23
4 4 14 24 96
5 5 15 25 25
6 6 16 26 26
7 7 17 27 81
8 8 18 28 28
9 9 19 29 29
10 10 20 30 30
Upvotes: 3
Reputation: 42689
Generate a multipler vector:
tt <- rep(1, max(z$x))
tt[2] <- 2
tt[4] <- 4
tt[7] <- 3
And here is your new column:
> z$t * tt[z$x]
[1] 21 44 23 96 25 26 81 28 29 30
> z$q <- z$t * tt[z$x]
> z
x y t q
1 1 11 21 21
2 2 12 22 44
3 3 13 23 23
4 4 14 24 96
5 5 15 25 25
6 6 16 26 26
7 7 17 27 81
8 8 18 28 28
9 9 19 29 29
10 10 20 30 30
This will not work if there are negative values in z$x
.
Edited
Here is a generalization of the above, where a function is used to generate the multiplier vector. In fact, we create a function based on parameters.
We want to transform the following values:
2 -> 2
4 -> 4
7 -> 3
Otherwise a default of 1 is taken.
Here is a function which generates the desired function:
f <- function(default, x, y) {
x.min <- min(x)
x.max <- max(x)
y.vals <- rep(default, x.max-x.min+1)
y.vals[x-x.min+1] <- y
function(z) {
result <- rep(default, length(z))
tmp <- z>=x.min & z<=x.max
result[tmp] <- y.vals[z[tmp]-x.min+1]
result
}
}
Here is how we use it:
x <- c(2,4,7)
y <- c(2,4,3)
g <- f(1, x, y)
g
is the function that we want. It should be clear that any mapping can be supplied via the x
and y
parameters to f
.
g(z$x)
## [1] 1 2 1 4 1 1 3 1 1 1
g(z$x)*z$t
## [1] 21 44 23 96 25 26 81 28 29 30
It should be clear this only works for integer values.
Upvotes: 3