Reputation: 29
I'm having problems with a task. I need to find and alert the user if the number is prime or not.
Here is my code:
int a = Convert.ToInt32(number);
if (a % 2 !=0 )
{
for (int i = 2; i <= a; i++)
{
if (a % i == 0)
{
Console.WriteLine("not prime");
}
else
{
Console.WriteLine("prime");
}
Console.WriteLine();
}
}
else
{
Console.WriteLine("not prime");
}
Console.ReadLine();
Where did I go wrong, and how can I fix it?
Upvotes: 0
Views: 8716
Reputation: 67
private static void checkpirme(int x)
{
for (int i = 1; i <= x; i++)
{
if (i == 1 || x == i)
{
continue;
}
else
{
if (x % i == 0)
{
Console.WriteLine(x + " is not prime number");
return;
}
}
}
Console.WriteLine(x + " is prime number");
}
where x is number to check it if prime or not
Upvotes: 0
Reputation: 30698
Yet another optimized way is to use Sieve of Eratosthenes algorithm.
From Wikipedia
To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method:
1. Create a list of consecutive integers from 2 to n: (2, 3, 4, ..., n).
2. Initially, let p equal 2, the first prime number.
3. Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These will be multiples of p: 2p, 3p, 4p, etc.; note that some of them may have already been marked.
4. Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.
When the algorithm terminates, all the numbers in the list that are not marked are prime.
C# code
int[] GetPrimes(int number) // input should be greater than 1
{
bool[] arr = new bool[number + 1];
var listPrimes = new List<int>();
for (int i = 2; i <= Math.Sqrt(number); i++)
{
if (!arr[i])
{
int squareI = i * i;
for (int j = squareI; j <= number; j = j + i)
{
arr[j] = true;
}
}
for (int c = 1; c < number + 1; c++)
{
if (arr[c] == false)
{
listPrimes.Add(c);
}
}
}
return listPrimes.ToArray();
}
Upvotes: 0
Reputation: 22794
I've done far too much prime checking.
I did this:
bool isPrime = true;
List<ulong> primes = new List<ulong>();
ulong nCheck, nCounted;
nCounted = 0;
nCheck = 3;
primes.Add(2);
for (; ; )
{
isPrime = true;
foreach (ulong nModulo in primes)
{
if (((nCheck / 2) + 1) <= nModulo)
{ break; }
if (nCheck % nModulo == 0)
{ isPrime = false; }
}
if (isPrime == true)
{
Console.WriteLine("New prime found: " + (nCheck) + ", prime number " + (++nCounted) + ".");
primes.Add(nCheck);
}
nCheck++;
nCheck++;
}
This is not EXACTLY what you are looking for though, so what I'd do is put this in a background worker, but with the list of ulongs as a concurrent list, or something that you can access in 2 threads. Or just lock the list while it's being accessed. If the prime hssn't been worked out yet, wait until it is.
Upvotes: 0
Reputation: 699
Presumably your code is outputting lots of messages, which seem jumbled and meaningless? There are 3 key issues:
You arn't breaking out of your for loop when you've decided it can't be prime
You are assuming it is prime when it might not be, see the comments in the code below.
You are comparing to a itself, and that will always be divisible by a, the <= in the for condition needs to be <
Code:
int a = Convert.ToInt32(number);
if (a % 2 != 0)
{
for (int i = 3 i < a; i += 2) // we can skip all the even numbers (minor optimization)
{
if (a % i == 0)
{
Console.WriteLine("not prime");
goto escape; // we want to break out of this loop
}
// we know it isn't divisible by i or any primes smaller than i, but that doesn't mean it isn't divisible by something else bigger than i, so keep looping
}
// checked ALL numbers, must be Prime
Console.WriteLine("prime");
}
else
{
Console.WriteLine("not prime");
}
escape:
Console.ReadLine();
As other have mentioned, you could only loop to the square root of the a, by per-evaluating the square root and replacing this line:
for (int i = 3 i < a; i += 2)
with this:
float sqrRoot = (Int)Math.Sqrt((float)a);
for (int i = 3 i <= sqrRoot; i += 2)
It is important to per-evaluate it else your program will run much slower, rather than faster, as each iteration will involve a square root operation.
If you don't like goto statements (I love goto statements), post a comment and I'll replace it will a breakout boolean (or see Dukeling's more recent answer).
Upvotes: 0
Reputation: 148110
Prime numbers is divisible by 1 and themselves you will need to check if number has exactly two divisor starting from one till number then it is prime.
int devisors = 0;
for (int i = 1; i <= a; i++)
if (a % i == 0)
devisors++;
if (devisors == 2)
Console.WriteLine("prime");
else
Console.WriteLine("not prime");
You can skip one iteration as we know all whole numbers are divisible by 1 then you will have exactly on divisor for prime numbers. Since 1 has only one divisor we need to skip it as it is not prime. So condition would be numbers having only one divisor other then 1 and number should not be one as one is not prime number.
int devisors = 0;
for (int i = 2; i <= a; i++)
if (a % i == 0)
devisors++;
if (a != 1 && devisors == 1)
Console.WriteLine("prime");
else
Console.WriteLine("not prime");
Upvotes: 2
Reputation: 55589
You just printed prime or not prime, and continued with the loop, rather than stopping. The %2
check is not really needed. Modified appropriately:
int a = Convert.ToInt32(number);
bool prime = true;
if (i == 1) prime = false;
for (int i = 2; prime && i < a; i++)
if (a % i == 0) prime = false;
if (prime) Console.WriteLine("prime");
else Console.WriteLine("not prime");
Console.ReadLine();
Upvotes: 1
Reputation: 13582
public bool isPrime(int num)
{
for (int i = 2; i < num; i++)
if (num % i == 0)
return false;
return num == 1 ? false : true;
}
Upvotes: 0