Reputation: 24655
I am backtesting some investment strategy using R, I have a piece of script below:
set.seed(1)
output.df <- data.frame(action=sample(c("initial_buy","sell","buy"),
10000,replace=TRUE),stringsAsFactors=FALSE)
output.df[,"uid"] <- 1:nrow(output.df)
cutrow.fx <- function(output.df) {
loop.del <- 2
while (loop.del <= nrow(output.df)) {
if ((output.df[loop.del,"action"]=="initial_buy" &
output.df[loop.del-1,"action"]=="initial_buy")|
(output.df[loop.del,"action"]=="sell" &
output.df[loop.del-1,"action"]=="sell")|
(output.df[loop.del,"action"]=="buy" &
output.df[loop.del-1,"action"]=="sell")|
(output.df[loop.del,"action"]=="initial_buy" &
output.df[loop.del-1,"action"]=="buy")){
output.df <- output.df[-loop.del,]
} else {
loop.del <- loop.del + 1
}
}
output.df<<-output.df
}
print(system.time(cutrow.fx(output.df=output.df)))
The strategy will determine: 1) when to start buying a stock; 2) when to add additional contribution to the stock; and 3) when to sell all the stock. I have a dataframe with price of a stock for the past 10 years. I wrote 3 scripts to indicate which date should I buy/sell the stock, combine the 3 results and order
them.
I need to remove some of the "impossible action", e.g. I cannot sell the same stock twice without buying new units beforehand, so I used the script above to delete those impossible action. But the for
loop is kind of slow.
Any suggestion for speeding it up?
I have updated the cutrow.fx
into the following but fail:
cutrow.fx <- function(output.df) {
output.df[,"action_pre"] <- "NIL"
output.df[2:nrow(output.df),"action_pre"] <- output.df[1:(nrow(output.df)-1),"action"]
while (any(output.df[,"action_pre"]=="initial_buy" & output.df[,"action"]=="initial_buy")|
any(output.df[,"action_pre"]=="sell" & output.df[,"action"]=="sell")|
any(output.df[,"action_pre"]=="sell" & output.df[,"action"]=="buy")|
any(output.df[,"action_pre"]=="buy" & output.df[,"action"]=="initial_buy")) {
output.df <- output.df[!(output.df[,"action_pre"]=="initial_buy" & output.df[,"action"]=="initial_buy"),]
output.df <- output.df[!(output.df[,"action_pre"]=="sell" & output.df[,"action"]=="sell"),]
output.df <- output.df[!(output.df[,"action_pre"]=="sell" & output.df[,"action"]=="buy"),]
output.df <- output.df[!(output.df[,"action_pre"]=="buy" & output.df[,"action"]=="initial_buy"),]
output.df[,"action_pre"] <- "NIL"
output.df[2:nrow(output.df),"action_pre"] <- output.df[1:(nrow(output.df)-1),"action"]
}
output.df[,"action_pre"] <- NULL
output.df<<-output.df
}
I used the vector comparison as somehow inspired (I used somehow as I'm not sure if I get exact what he means in the answer) by John, use a while-loop to repeat. But the output is not the same.
Is the for-loop here inevitable?
Upvotes: 1
Views: 332
Reputation: 13363
I tried to do something clever with vectorization, but failed because previous iterations of the loop can change the data relationships for later iterations through. So I couldn't lag the data by a set amount and compare lagged to real results.
What I can do is minimize the copying operation involved. R is assign-by-copy, so when you write a statement like output.df <- output.df[-loop.del,]
, you are copying the entire data structure for each row that is deleted. Instead of changing (and copying) the data frame, I made changes to a logical vector. Some other attempts at speed-up include using logical and (&&
) instead of bitwise and (&
), using %in%
to make fewer comparisons, and minimizing accesses on output.df
.
To compare the two functions I slightly modified OP solution such that the original data frame was not overwritten. It looks like this can improve speeds by a factor of 10, but it still takes a noticeable about of time (>0.5 sec). I'd love to see any faster solutions.
OP's solution (slightly modified in return value and without global assign)
cutrow.fx <- function(output.df) {
loop.del <- 2
while (loop.del <= nrow(output.df)) {
if ((output.df[loop.del,"action"]=="initial_buy" &
output.df[loop.del-1,"action"]=="initial_buy")|
(output.df[loop.del,"action"]=="sell" &
output.df[loop.del-1,"action"]=="sell")|
(output.df[loop.del,"action"]=="buy" &
output.df[loop.del-1,"action"]=="sell")|
(output.df[loop.del,"action"]=="initial_buy" &
output.df[loop.del-1,"action"]=="buy")){
output.df <- output.df[-loop.del,]
} else {
loop.del <- loop.del + 1
}
}
return(output.df)
}
ans1 <- cutrow.fx(output.df)
my solution
cutrow.fx2 <- function(output.df) {
##edge case if output.df has too few rows
if (nrow(output.df) < 2) return(output.df)
##logical vector of indices of rows to keep
idx <- c(TRUE,logical(nrow(output.df)-1))
##keeps track of the previous row
prev.row <- 1
prev.act <- output.df[prev.row,"action"]
for (current.row in seq_len(nrow(output.df))[-1]) {
##access output.df only once per iteration
current.act <- output.df[current.row,"action"]
##checks to see if current row is bad
##if so, continue to next row and leave previous row as is
if ( (prev.act %in% c("initial_buy","buy")) &&
(current.act == "initial_buy") ) {
next
} else if ( (prev.act == "sell") &&
(current.act %in% c("buy","sell")) ) {
next
}
##if current row is good, mark it in idx and update previous row
idx[current.row] <- TRUE
prev.row <- current.row
prev.act <- current.act
}
return(output.df[idx,])
}
ans2 <- cutrow.fx2(output.df)
checks that answers are the same
identical(ans1,ans2)
## [1] TRUE
#benchmarking
require(microbenchmark)
mb <- microbenchmark(
ans1=cutrow.fx(output.df)
,ans2=cutrow.fx2(output.df),times=50)
print(mb)
# Unit: milliseconds
# expr min lq median uq max
# 1 ans1 9630.1671 9743.1102 9967.6442 10264.7000 12396.5822
# 2 ans2 481.8821 491.6699 500.6126 544.4222 645.9658
plot(mb)
require(ggplot2)
ggplot2::qplot(y=time, data=mb, colour=expr) + ggplot2::scale_y_log10()
Upvotes: 2
Reputation: 42639
Here is some code that is a bit simpler and much faster. It does not loop over all elements, but only loops between matches. It matches forward rather than backward.
First, modify your cutrow.fx
function. Remove the <<-output.df
on the last line, and simply return the result. Then you can run two functions and compare the results.
cutrow.fx1 <- function(d) {
len <- length(d[,1])
o <- logical(len)
f <- function(a) {
switch(a,
initial_buy=c('buy', 'sell'),
buy=c('buy', 'sell'),
sell='initial_buy'
)
}
cur <- 1
o[cur] <- TRUE
while (cur < len) {
nxt <- match(f(d[cur,1]), d[(cur+1):len,1])
if (all(is.na(nxt))) {
break
} else {
cur <- cur + min(nxt, na.rm=TRUE);
o[cur] <- TRUE
}
}
d[o,]
}
Show that the results are correct:
identical(cutrow.fx1(output.df), cutrow.fx(output.df))
## [1] TRUE
And it is quite a bit faster. This is due to the partial vectorization of the problem, using match
to find the next row to keep, rather than iterating to discard rows.
print(system.time(cutrow.fx(output.df)))
## user system elapsed
## 5.688 0.000 5.720
print(system.time(cutrow.fx1(output.df)))
## user system elapsed
## 1.050 0.000 1.056
Upvotes: 1
Reputation: 23758
It looks like all you're doing is checking the last action. This doesn't require a loop at all. All you have to do is shift the vector and do straight vector comparisons. Here's an artificial example.
x <- sample(1:11)
buysell <- sample(c('buy', 'sell'), 11, replace = TRUE)
So, I have 11 samples, x, and whether I've bought or sold them. I want to make a boolean that shows whether I bought or sold the last sample.
bought <- c(NA, buysell[1:10])
which( bought == 'buy' )
Examine the x and buysell variables and you'll see the results here are the index of the x items where a buy was made on the prior item.
Also, you might want to check out he function %in%
.
Upvotes: 2