Reputation: 123
I am attempting to transform columns to rows in R, without the use of reshape (can't install the package). The data I have received includes attributes and their corresponding metrics. I would like to calculate the statistical correlation between all of these attributes--16000 in total with 8 million records. Not all records have the same number of attributes.
To do this, I believe I will have to convert columns to rows so that I can eventually use the cor function e.g. cor(x[,1], x[,2:16000]). This may be wholly unnecessary if there is some way to use the cor function by attribute i.e. correlation between attribute 1 and 2, attribute 1 and 3, attribute 1 ... N. Any help would be much appreciated.
ID Attribute Metric1
[1,] 1 1 -1.6363007
[2,] 2 1 1.1483294
[3,] 3 1 2.1682566
[4,] 4 1 -1.1823649
[5,] 5 1 -1.3631378
[6,] 1 2 -1.1715544
[7,] 2 2 1.5164278
[8,] 3 2 -1.0110274
[9,] 4 2 -0.9421652
[10,] 5 2 -0.2105443
[11,] 6 2 -0.4143548
[12,] 7 2 -1.6170975
[13,] 8 2 1.2402303
[14,] 9 2 0.4460047
[15,] 7 3 0.1060407
[16,] 8 3 0.9796893
[17,] 9 3 0.9254911
[18,] 10 3 -1.5728600
[19,] 11 3 -0.8082675
[20,] 12 3 -1.8643084
Transformation:
ID attribute1 attribute2 attribute3
1 -1.6363007 -1.1715544 na
2 1.1483294 1.5164278 na
3 2.1682566 -1.0110274 na
4 -1.1823649 -0.9421652 na
5 -1.3631378 -0.2105443 na
6 na -0.4143548 na
7 na -1.6170975 0.1060407
8 na 1.2402303 0.9796893
9 na 0.4460047 0.9254911
10 na na -1.57286
11 na na -0.8082675
12 na na -1.8643084
test <- cbind(c(rep(1,5),rep(2,9),rep(3,6)), replicate(1,rnorm(20)))
test <- cbind(c(1:5,1:9,7:12),test)
@Aaron
q <- matrix(nrow=20,ncol=3)
colnames(q) <- c("x","y","z")
q[,3] <- replicate(1, rnorm(20))
q[,2] <- c(101,102,103,104,105,106, 107, 108, 101,103,107,109, 104,110,102,103,106,109,108,112)
q[15:20,1] <- 10000003
q[9:14,1] <- 10000002
q[1:8,1] <- 10000001
q <- data.frame(q)
q$x <- factor(q$x)
q$y <- factor(q$y)
q$z <- factor(q$z)
with(q, {
out <- matrix(nrow=nlevels(x), ncol=nlevels(y),
dimnames=list(levels(x), levels(y)))
out[cbind(x, y)] <- z
out
})
Upvotes: 2
Views: 7026
Reputation: 121568
using reshape2
acast(dat, ID~Attribute, value.var="Metric1")
1 2 3
1 -1.636301 -1.1715544 NA
2 1.148329 1.5164278 NA
3 2.168257 -1.0110274 NA
4 -1.182365 -0.9421652 NA
5 -1.363138 -0.2105443 NA
6 NA -0.4143548 NA
7 NA -1.6170975 0.1060407
8 NA 1.2402303 0.9796893
9 NA 0.4460047 0.9254911
10 NA NA -1.5728600
11 NA NA -0.8082675
12 NA NA -1.8643084
Upvotes: 0
Reputation: 193517
No need for the "reshape" or "reshape2" packages. Just use base R reshape()
. Assuming your data.frame
is named "temp":
reshape(temp, direction = "wide", idvar="ID", timevar="Attribute")
# ID Metric1.1 Metric1.2 Metric1.3
# [1,] 1 -1.636301 -1.1715544 NA
# [2,] 2 1.148329 1.5164278 NA
# [3,] 3 2.168257 -1.0110274 NA
# [4,] 4 -1.182365 -0.9421652 NA
# [5,] 5 -1.363138 -0.2105443 NA
# [11,] 6 NA -0.4143548 NA
# [12,] 7 NA -1.6170975 0.1060407
# [13,] 8 NA 1.2402303 0.9796893
# [14,] 9 NA 0.4460047 0.9254911
# [18,] 10 NA NA -1.5728600
# [19,] 11 NA NA -0.8082675
# [20,] 12 NA NA -1.8643084
If your data are a matrix
and not a data.frame
, you will need to convert it to a data.frame
before using reshape()
, or you can use xtabs()
. However, using xtabs()
creates zeroes instead of NA
s. Here's the xtabs()
approach:
xtabs(Metric1 ~ ID + Attribute, tempm)
# Attribute
# ID 1 2 3
# 1 -1.6363007 -1.1715544 0.0000000
# 2 1.1483294 1.5164278 0.0000000
# 3 2.1682566 -1.0110274 0.0000000
# 4 -1.1823649 -0.9421652 0.0000000
# 5 -1.3631378 -0.2105443 0.0000000
# 6 0.0000000 -0.4143548 0.0000000
# 7 0.0000000 -1.6170975 0.1060407
# 8 0.0000000 1.2402303 0.9796893
# 9 0.0000000 0.4460047 0.9254911
# 10 0.0000000 0.0000000 -1.5728600
# 11 0.0000000 0.0000000 -0.8082675
# 12 0.0000000 0.0000000 -1.8643084
Upvotes: 5