Reputation: 377
I am looking for parallel version of aggregate() function and looks like http://cran.r-project.org/web/packages/mapReduce/mapReduce.pdf together with http://cran.r-project.org/web/packages/multicore/multicore.pdf is exactly what I am looking for.
So as a test I've created a dataset with 10m records
blockSize <- 5000
records <- blockSize * 2000
df <- data.frame(id=1:records, value=rnorm(records))
df$period <- round(df$id/blockSize)
# now I want to aggregate by period and return mean of every block:
x <- aggregate(value ~ period, data=df, function(x) { mean(x) })
# with mapReduce it can be done
library(multicore)
library(mapReduce)
jobId <- mcparallel(mapReduce(map=period, mean(value), data=df))
y <- collect(jobId)
but still somehow it doesn't utilise all 4 CPU cores on my laptop:
$ top
02:00:35 up 3 days, 18:14, 3 users, load average: 1,61, 1,20, 0,79
Tasks: 237 total, 2 running, 235 sleeping, 0 stopped, 0 zombie
%Cpu0 : 17,4 us, 5,1 sy, 0,0 ni, 74,3 id, 0,0 wa, 0,0 hi, 3,2 si, 0,0 st
%Cpu1 : 13,4 us, 6,9 sy, 0,0 ni, 79,7 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
%Cpu2 : 21,3 us, 32,3 sy, 0,0 ni, 46,3 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
%Cpu3 : 17,0 us, 36,0 sy, 0,0 ni, 47,0 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
KiB Mem: 3989664 total, 3298340 used, 691324 free, 27248 buffers
KiB Swap: 7580668 total, 1154164 used, 6426504 free, 320360 cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
459 myuser 20 0 1850m 1,8g 1120 R **99,1** 46,4 0:37.43 R
I use R 2.15.1:
R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i686-pc-linux-gnu (32-bit)
What am I doing wrong and how to aggregate huge datasets in R utilising multicore?
Thanks.
Upvotes: 3
Views: 1003
Reputation: 115390
How do you aggregate huge data sets in R
?
Use data.table
library(data.table)
DT <- data.table(df)
setkey(DT, period)
DT[, list(value = mean(value)), by = period]
This will not use multiple cores, but will be extremely fast and memory efficient.
Upvotes: 5