Reputation: 1307
I want to be able to create a plot, press one button or another depending on what the plot shows, and then plot the following object. However, I am having some trouble wih it: it seems I can't make it "wait" untill a button is pressed. Also, I am wondering if it would be possible to pass some parameters to the press_event, like a path to save something.
Here is the scheme of the program in case it helps. Thanks a lot in advance!
# event definition
def ontype(event):
if event.key == '1':
do stuff 1
plt.savefig(...)
plt.clf()
elif event.key == '2':
do stuff 2
plt.savefig(...)
plt.clf()
elif event.key == '3':
do stuff 3
plt.savefig(...)
plt.clf()
# main program
...stuff
create figure
plt.show()
plt.gcf().canvas.mpl_connect('key_press_event',ontype)
Upvotes: 2
Views: 1768
Reputation: 12765
You must call plt.gcf().canvas.mpl_connect('key_press_event',ontype)
before plt.show()
. In non-interactive mode, the execution waits at plt.show()
until the plot-window is closed.
import pylab as plt
# event definition
def ontype(event):
if event.key == '1':
print "1"
elif event.key == '2':
print "2"
elif event.key == '3':
print "3"
# main program
plt.plot([1,6,3,8,7])
plt.gcf().canvas.mpl_connect('key_press_event',ontype)
plt.show()
Alternatively, replace in your sample plt.show()
to plt.ion()
, which enables interactive mode. But it depends on your specific needs which solution you prefer.
Edit
New example using Tkinter
import random
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
from matplotlib.figure import Figure
try:
import Tkinter as Tk
except ImportError:
import tkinter as Tk
import tkMessageBox
class PlotClassifier(Tk.Tk):
def __init__(self, plot_generator, arguments, classes, classification_callback, *args, **kwargs):
Tk.Tk.__init__(self, *args, **kwargs)
self.title("Plot classifier, working on %i plots" % len(arguments))
#self.label = Tk.Label(text="Plot classifier, working on %i plots" % len(arguments))
#self.label.pack(padx=10, pady=10)
self._plot_generator = plot_generator
self._arguments = arguments
self._classes = [str(x) for x in classes]
self._classification_callback = classification_callback
self._setup_gui()
def _setup_gui(self):
#self.columnconfigure(0, minsize=100, weight=2)
#self.columnconfigure(1, minsize=500, weight=8)
f = Figure()
self._ax = f.add_subplot(111)
buttons_frame = Tk.Frame(self)
buttons_frame.pack(side=Tk.TOP, fill=Tk.BOTH, expand=True)
buttons_class = []
for i, cls in enumerate(self._classes):
buttons_class.append(Tk.Button(master=buttons_frame, text=cls,
command=lambda x=i: self.button_classification_callback(self._current_args, x)))
buttons_class[-1].pack(side=Tk.LEFT)
button_quit = Tk.Button(master=buttons_frame, text='Quit', command=self.destroy)
button_quit.pack(side=Tk.RIGHT) #.grid(row=0,column=0)
self._canvas = FigureCanvasTkAgg(f, master=self)
self._canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) #.grid(row=0, column=1, rowspan=3) #
self._canvas.show()
toolbar = NavigationToolbar2TkAgg( self._canvas, self )
toolbar.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) #.grid(row=3, column=1) #
toolbar.update()
def button_classification_callback(self, args, class_idx):
self._classification_callback(args, self._classes[class_idx])
self.classify_next_plot()
def classify_next_plot(self):
try:
self._current_args = self._arguments.pop(0)
self._ax.cla()
self._plot_generator(self._ax, *self._current_args)
self._canvas.draw()
except IndexError:
tkMessageBox.showinfo("Complete!", "All plots were classified")
self.destroy()
def create_plot(ax, factor):
ax.plot([(i*factor) % 11 for i in range(100)])
def announce_classification(arguments, class_):
print arguments, class_
if __name__ == "__main__":
classes = ["Class %i"%i for i in range(1, 6)]
arguments_for_plot = [[random.randint(1,10)] for x in range(10)]
root = PlotClassifier(create_plot, arguments_for_plot, classes, classification_callback=announce_classification)
root.after(50, root.classify_next_plot)
root.mainloop()
The class takes as arguments: * a callback to create each plot * a list of lists of arguments for each plot to generate (might each be an empty list) * a list of class-names. For each class, a button is created * a callback that is called each time a classification has been performed
Any feedback would be appreciated.
*EDIT 2 * For your comment, a slightly modified version. For every iteration of the loop, a new window is opened
import random
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
from matplotlib.figure import Figure
try:
import Tkinter as Tk
except ImportError:
import tkinter as Tk
import tkMessageBox
class PlotClassifier(Tk.Tk):
def __init__(self, plot_generator, arguments, classes, *args, **kwargs):
Tk.Tk.__init__(self, *args, **kwargs)
self.title("Plot classifier")
self._plot_generator = plot_generator
self._arguments = arguments
self._classes = [str(x) for x in classes]
self.class_ = None
self._setup_gui()
def _setup_gui(self):
#self.columnconfigure(0, minsize=100, weight=2)
#self.columnconfigure(1, minsize=500, weight=8)
f = Figure()
self._ax = f.add_subplot(111)
buttons_frame = Tk.Frame(self)
buttons_frame.pack(side=Tk.TOP, fill=Tk.X, expand=True)
buttons_class = []
for i, cls in enumerate(self._classes):
buttons_class.append(Tk.Button(master=buttons_frame, text=cls,
command=lambda x=i: self.button_classification_callback(x)))
buttons_class[-1].pack(side=Tk.LEFT)
button_quit = Tk.Button(master=buttons_frame, text='Quit', command=self.destroy)
button_quit.pack(side=Tk.RIGHT) #.grid(row=0,column=0)
self._canvas = FigureCanvasTkAgg(f, master=self)
self._canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) #.grid(row=0, column=1, rowspan=3) #
self._canvas.show()
toolbar = NavigationToolbar2TkAgg( self._canvas, self )
toolbar.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) #.grid(row=3, column=1) #
toolbar.update()
def button_classification_callback(self, class_idx):
self.class_ = self._classes[class_idx]
self.destroy()
def classify_plot(self):
self._ax.cla()
self._plot_generator(self._ax, *self._arguments)
self._canvas.draw()
self.mainloop()
return self.class_
def create_plot(ax, factor):
ax.plot([(i*factor) % 11 for i in range(100)])
if __name__ == "__main__":
classes = ["Class %i"%i for i in range(1, 6)]
arguments_for_plot = [[random.randint(1,10)] for x in range(10)]
for args in arguments_for_plot:
classifier = PlotClassifier(create_plot, args, classes)
class_ = classifier.classify_plot()
print args, class_
if class_ is None:
break
This helps to fit into your own for-loop, but you still have to give a function to do the plotting after the GUI was created.
Upvotes: 3