user1911092
user1911092

Reputation: 4241

Pandas Merge (pd.merge) How to set the index and join

I have two pandas dataframes: dfLeft and dfRight with the date as the index.

dfLeft:

            cusip    factorL
date  
2012-01-03    XXXX      4.5
2012-01-03    YYYY      6.2
....
2012-01-04    XXXX      4.7
2012-01-04    YYYY      6.1
....

dfRight:

            idc__id    factorR
date  
2012-01-03    XXXX      5.0
2012-01-03    YYYY      6.0
....
2012-01-04    XXXX      5.1
2012-01-04    YYYY      6.2

Both have a shape close to (121900,3)

I tried the following merge:

test = pd.merge(dfLeft, dfRight, left_index=True, right_index=True, left_on='cusip', right_on='idc__id', how = 'inner')

This gave test a shape of (60643500, 6).

Any recommendations on what is going wrong here? I want it to merge based on both date and cusip/idc_id. Note: for this example the cusips are lined up, but in reality that may not be so.

Thanks.

Expected Output test:

             cusip    factorL    factorR
date  
2012-01-03    XXXX      4.5          5.0
2012-01-03    YYYY      6.2          6.0
....
2012-01-04    XXXX      4.7          5.1
2012-01-04    YYYY      6.1          6.2

Upvotes: 14

Views: 51316

Answers (2)

Andy Hayden
Andy Hayden

Reputation: 375535

You could append 'cuspin' and 'idc_id' as a indices to your DataFrames before you join (here's how it would work on the first couple of rows):

In [10]: dfL
Out[10]: 
           cuspin  factorL
date                      
2012-01-03   XXXX      4.5
2012-01-03   YYYY      6.2

In [11]: dfL1 = dfLeft.set_index('cuspin', append=True)

In [12]: dfR1 = dfRight.set_index('idc_id', append=True)

In [13]: dfL1
Out[13]: 
                   factorL
date       cuspin         
2012-01-03 XXXX        4.5
           YYYY        6.2

In [14]: dfL1.join(dfR1)
Out[14]: 
                   factorL  factorR
date       cuspin                  
2012-01-03 XXXX        4.5        5
           YYYY        6.2        6

Upvotes: 11

tzelleke
tzelleke

Reputation: 15345

Reset the indices and then merge on multiple (column-)keys:

dfLeft.reset_index(inplace=True)
dfRight.reset_index(inplace=True)
dfMerged = pd.merge(dfLeft, dfRight,
              left_on=['date', 'cusip'],
              right_on=['date', 'idc__id'],
              how='inner')

You can then reset 'date' as an index:

dfMerged.set_index('date', inplace=True)

Here's an example:

raw1 = '''
2012-01-03    XXXX      4.5
2012-01-03    YYYY      6.2
2012-01-04    XXXX      4.7
2012-01-04    YYYY      6.1
'''

raw2 = '''
2012-01-03    XYXX      45.
2012-01-03    YYYY      62.
2012-01-04    XXXX      -47.
2012-01-05    YYYY      61.
'''

import pandas as pd
from StringIO import StringIO


df1 = pd.read_table(StringIO(raw1), header=None,
                    delim_whitespace=True, parse_dates=[0], skiprows=1)
df2 = pd.read_table(StringIO(raw2), header=None,
                    delim_whitespace=True, parse_dates=[0], skiprows=1)

df1.columns = ['date', 'cusip', 'factorL']
df2.columns = ['date', 'idc__id', 'factorL']

print pd.merge(df1, df2,
         left_on=['date', 'cusip'],
         right_on=['date', 'idc__id'],
         how='inner')

which gives

                  date cusip  factorL_x idc__id  factorL_y
0  2012-01-03 00:00:00  YYYY        6.2    YYYY         62
1  2012-01-04 00:00:00  XXXX        4.7    XXXX        -47

Upvotes: 20

Related Questions