mazlor
mazlor

Reputation: 1895

Import CSV file as a Pandas DataFrame

How do I read the following CSV file into a Pandas DataFrame?

Date,"price","factor_1","factor_2"
2012-06-11,1600.20,1.255,1.548
2012-06-12,1610.02,1.258,1.554
2012-06-13,1618.07,1.249,1.552
2012-06-14,1624.40,1.253,1.556
2012-06-15,1626.15,1.258,1.552
2012-06-16,1626.15,1.263,1.558
2012-06-17,1626.15,1.264,1.572

Upvotes: 142

Views: 320711

Answers (4)

cs95
cs95

Reputation: 402323

To read a CSV file as a pandas DataFrame, you'll need to use pd.read_csv, which has sep=',' as the default.

But this isn't where the story ends; data exists in many different formats and is stored in different ways so you will often need to pass additional parameters to read_csv to ensure your data is read in properly.

Here's a table listing common scenarios encountered with CSV files along with the appropriate argument you will need to use. You will usually need all or some combination of the arguments below to read in your data.

┌───────────────────────────────────────────────────────┬───────────────────────┬────────────────────────────────────────────────────┐
│ pandas Implementation                                 │ Argument              │ Description                                        │
├───────────────────────────────────────────────────────┼───────────────────────┼────────────────────────────────────────────────────┤
│ pd.read_csv(..., sep=';')                             │ sep/delimiter         │ Read CSV with different separator¹                 │
│ pd.read_csv(..., delim_whitespace=True)               │ delim_whitespace      │ Read CSV with tab/whitespace separator             │
│ pd.read_csv(..., encoding='latin-1')                  │ encoding              │ Fix UnicodeDecodeError while reading²              │
│ pd.read_csv(..., header=False, names=['x', 'y', 'z']) │ header and names      │ Read CSV without headers³                          │
│ pd.read_csv(..., index_col=[0])                       │ index_col             │ Specify which column to set as the index⁴          │
│ pd.read_csv(..., usecols=['x', 'y'])                  │ usecols               │ Read subset of columns                             │
│ pd.read_csv(..., thousands='.', decimal=',')          │ thousands and decimal │ Numeric data is in European format (eg., 1.234,56) │
└───────────────────────────────────────────────────────┴───────────────────────┴────────────────────────────────────────────────────┘

Footnotes

  1. By default, read_csv uses a C parser engine for performance. The C parser can only handle single character separators. If your CSV has a multi-character separator, you will need to modify your code to use the 'python' engine. You can also pass regular expressions:

     df = pd.read_csv(..., sep=r'\s*\|\s*', engine='python')
    
  2. UnicodeDecodeError occurs when the data was stored in one encoding format but read in a different, incompatible one. Most common encoding schemes are 'utf-8' and 'latin-1', your data is likely to fit into one of these.

  3. header=False specifies that the first row in the CSV is a data row rather than a header row, and the names=[...] allows you to specify a list of column names to assign to the DataFrame when it is created.

  4. "Unnamed: 0" occurs when a DataFrame with an un-named index is saved to CSV and then re-read after. Instead of having to fix the issue while reading, you can also fix the issue when writing by using

     df.to_csv(..., index=False)
    

There are other arguments I've not mentioned here, but these are the ones you'll encounter most frequently.

Upvotes: 34

root
root

Reputation: 80346

pandas.read_csv to the rescue:

import pandas as pd
df = pd.read_csv("data.csv")
print(df)

This outputs a pandas DataFrame:

        Date    price  factor_1  factor_2
0  2012-06-11  1600.20     1.255     1.548
1  2012-06-12  1610.02     1.258     1.554
2  2012-06-13  1618.07     1.249     1.552
3  2012-06-14  1624.40     1.253     1.556
4  2012-06-15  1626.15     1.258     1.552
5  2012-06-16  1626.15     1.263     1.558
6  2012-06-17  1626.15     1.264     1.572

Upvotes: 230

siddharthlatest
siddharthlatest

Reputation: 2257

Here's an alternative to pandas library using Python's built-in csv module.

import csv
from pprint import pprint
with open('foo.csv', 'rb') as f:
    reader = csv.reader(f)
    headers = reader.next()
    column = {h:[] for h in headers}
    for row in reader:
        for h, v in zip(headers, row):
            column[h].append(v)
    pprint(column)    # Pretty printer

will print

{'Date': ['2012-06-11',
          '2012-06-12',
          '2012-06-13',
          '2012-06-14',
          '2012-06-15',
          '2012-06-16',
          '2012-06-17'],
 'factor_1': ['1.255', '1.258', '1.249', '1.253', '1.258', '1.263', '1.264'],
 'factor_2': ['1.548', '1.554', '1.552', '1.556', '1.552', '1.558', '1.572'],
 'price': ['1600.20',
           '1610.02',
           '1618.07',
           '1624.40',
           '1626.15',
           '1626.15',
           '1626.15']}

Upvotes: 10

Lee-Man
Lee-Man

Reputation: 414

Note quite as clean, but:

import csv

with open("value.txt", "r") as f:
    csv_reader = reader(f)
    num = '  '
    for row in csv_reader:
        print num, '\t'.join(row)
        if num == '  ':  
            num=0
        num=num+1

Not as compact, but it does the job:

   Date price   factor_1    factor_2
1 2012-06-11    1600.20 1.255   1.548
2 2012-06-12    1610.02 1.258   1.554
3 2012-06-13    1618.07 1.249   1.552
4 2012-06-14    1624.40 1.253   1.556
5 2012-06-15    1626.15 1.258   1.552
6 2012-06-16    1626.15 1.263   1.558
7 2012-06-17    1626.15 1.264   1.572

Upvotes: -1

Related Questions