Reputation: 503
i have to following problem: I need a 1d-string with equaly distributed numbers on a LOG-scale. To eb precise: 1,2,3,4,5,6,7,8,9,10,20,30,40...,100,200,300,... and so on. This can go up to 10^9, so typing is not an option ;)
my code so far is the following:
ome = np.linspace(1,9,9).reshape(9,1)
pow = np.linspce(0,5,6).reshape(1,6)
logome = ome*(10**pow)
but this not working and i don't know how to proceed... any suggestions?
okay, i figured some way out, if anybody is interested:
ome = np.linspace(1,9,9).reshape(1,9)
pow = np.linspce(0,5,6)
pow = np.power(10,pow).reshape(6,1)
logome = ome*pow
logome.reshape(54)
et voila :)
Upvotes: 3
Views: 346
Reputation: 353059
To get your desired output, I'd probably do something like this:
>>> (np.arange(1, 10) * 10**np.arange(9)[:,None]).flatten()
array([ 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 20, 30,
40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 600,
700, 800, 900, 1000, 2000, 3000,
4000, 5000, 6000, 7000, 8000, 9000,
10000, 20000, 30000, 40000, 50000, 60000,
70000, 80000, 90000, 100000, 200000, 300000,
400000, 500000, 600000, 700000, 800000, 900000,
1000000, 2000000, 3000000, 4000000, 5000000, 6000000,
7000000, 8000000, 9000000, 10000000, 20000000, 30000000,
40000000, 50000000, 60000000, 70000000, 80000000, 90000000,
100000000, 200000000, 300000000, 400000000, 500000000, 600000000,
700000000, 800000000, 900000000])
where the second term works like this:
>>> np.arange(5)
array([0, 1, 2, 3, 4])
>>> np.arange(5)[:, None]
array([[0],
[1],
[2],
[3],
[4]])
>>> 10**np.arange(5)[:, None]
array([[ 1],
[ 10],
[ 100],
[ 1000],
[10000]])
You might also be interested in np.logspace
. BTW, note that this array isn't equally distributed on a log-scale.
Upvotes: 3