Reputation: 8797
This link doesn't answer my question so I'll ask it here:
Basically I want to write a template function
template <typename Out, typename In>
Out f(In x);
Here I always need to specify Out
when calling f
. I don't want to do it every time, so I basically want
template <typename Out = In, typename In>
Out f(In x);
Which means if I don't specify Out
, it will default to In
. However, this is not possible in C++11.
So my question is, is there any way to achieve the effect:
f(t)
will instantiate f<T,T>(t)
or more generally f<typename SomeThing<T>::type, T>
f<U>(t)
will instantiate f<U, T>(t)
Upvotes: 6
Views: 356
Reputation: 8797
I have a PERFECT solution here! f<const int&>
won't work because a function can't return a reference to a temporary, not related to the techniques used here.
[hidden]$ cat a.cpp
#include <iostream>
#include <type_traits>
#include <typeinfo>
using namespace std;
template <typename Out, typename In>
Out f_impl(In x) {
cout << "Out=" << typeid(Out).name() << " " << "In=" << typeid(In).name() << endl;
return Out();
}
template <typename T, typename... Args>
struct FirstOf {
typedef T type;
};
template <typename T, typename U>
struct SecondOf {
typedef U type;
};
template <typename... Args, typename In>
typename enable_if<sizeof...(Args) <= 1, typename FirstOf<Args..., In>::type>::type f(In x) {
typedef typename FirstOf<Args..., In>::type Out;
return f_impl<Out, In>(x);
}
template <typename... Args, typename In>
typename enable_if<sizeof...(Args) == 2, typename FirstOf<Args...>::type>::type f(In x) {
typedef typename FirstOf<Args...>::type Out;
typedef typename SecondOf<Args...>::type RealIn;
return f_impl<Out, RealIn>(x);
}
int main() {
f(1);
f(1.0);
f<double>(1);
f<int>(1.0);
f<int>(1);
f<const int>(1);
f<int, double>(1);
f<int, int>(1);
f<double, double>(1);
}
[hidden]$ g++ -std=c++11 a.cpp
[hidden]$ ./a.out
Out=i In=i
Out=d In=d
Out=d In=i
Out=i In=d
Out=i In=i
Out=i In=i
Out=i In=d
Out=i In=i
Out=d In=d
Upvotes: 2
Reputation: 545588
You probably never want to specify In
but rather have it deduced, right?
In this case you need to overload the function:
template <typename Out, In>
Out f(In x);
template <typename T>
T f(T x);
Call it:
f(42);
f<float>(42);
… but unfortunately that’s ambiguous for f<int>(42)
. No matter, we can use SFINAE to disable one of the overloads appropriately:
template <
typename Out,
typename In,
typename = typename std::enable_if<not std::is_same<Out, In>::value>::type
>
Out f(In x);
template <typename T>
T f(T x);
In order to avoid redundancy in the implementation, let both functions dispatch to a common implementation, f_impl
.
template <typename Out, typename In>
Out f_impl(In x) {
std::cout << "f<" << typeid(Out).name() <<
", " << typeid(In).name() <<
">(" << x << ")\n";
return x;
}
template <
typename Out,
typename In,
typename = typename std::enable_if<not std::is_same<Out, In>::value>::type
>
Out f(In x) {
std::cout << "f<Out, In>(x):\t ";
return f_impl<Out, In>(x);
}
template <typename T>
T f(T x) {
std::cout << "f<T>(x):\t ";
return f_impl<T, T>(x);
}
int main() {
f(42);
f<float>(42);
f<int>(42);
}
Upvotes: 8
Reputation: 7925
You may not need it here, but here is a classical technique:
struct Default
{
template <typename Argument, typename Value>
struct Get {
typedef Argument type;
};
template <typename Value>
struct Get <Default, Value> {
typedef Value type;
};
};
template <typename Out = Default, typename In>
typename Default::Get<Out, In>::type f(In x);
Upvotes: 4