Reputation: 5
I'm trying to implement a loop without using loop instructions in verilog so i made a counter module and the simulation went perfectly but when i tried to implement it on the FPGA i got a lot of errors in the mapping , like this one
ERROR:MapLib:979 - LUT4 symbol
"Inst_Count/Mcompar_GND_1105_o_xcount[7]_LessThan_25_o_lut<0>" (output
signal=Inst_Count/Mcompar_GND_1105_o_xcount[7]_LessThan_25_o_lut<0>) has
input signal "Inst_Count/Madd_x[9]_GND_1105_o_add_0_OUT_cy<0>" which will be
trimmed. See Section 5 of the Map Report File for details about why the input
signal will become undriven.
These errors only occurred when i replaced this module with the loop instruction module so does anyone no what's the problem with this one ?
Thanks for giving this your time :)
module average( input rst , output reg [7:0]
reg [7:0] count;
reg [7:0] prv_count;
reg clk;
initial
begin
count = 8'd0;
end
always @ (posedge rst)
begin
clk = 1'b0;
end
always @ (clk)
begin
prv_count = count ;
count = prv_count + 1'b1;
end
always @ (count)
begin
if (count == 8'd255)
G_count= count;
else
begin
clk = ~clk;
G_count= count;
end
end
endmodule
Upvotes: 0
Views: 655
Reputation:
Oh, this is just plain wrong. I don't really think anybody can help here without giving you a lecture on Verilog, but... some things that are noticeable right away are:
)
went missing).prv_count
is useless.8'd255
is exactly 8'b11111111
and it resets to 0 if you add 1'b1, etc).And tons of other things, which raise the obvious question — have you tried reading some books on Verilog, preferably those covering synthesizable part of the language? :) Anyhow, what you are trying to do (as far as I can understand) would probably look something like this:
module average(input clk, input rst, output reg [7:0] overflow_count);
reg [7:0] count;
always @(posedge clk or negedge rst) begin
if (~rst) begin
count <= 8'b0;
overflow_count <= 8'b0;
end else begin
count <= (count + 1'b1);
if (count == 8'b0)
overflow_count <= (overflow_count + 1'b1);
end
end
endmodule
Hope it helps and really suggest you take a look at some good books on HDL.
Upvotes: 2