Reputation: 660
Okay, just about everywhere I read, I read that getters/setters are "evil". Now, as a programmer who uses getters/setters often in PHP / C#, I do not see how they are alive. I have read that they break encapsulation, etc etc, however, here is a simple example.
class Armor{
int armorValue;
public:
Armor();
Armor(int); //int here represents armor value
int GetArmorValue();
void SetArmorValue(int);
};
Now, lets say getters and setters are "evil". How are you supposed to change a member variable after initialization.
Example:
Armor arm=Armor(128); //armor with 128 armor value
//for some reason I would like to change this armor value
arm.SetArmorValue(55); //if i do not use getters / setters how is this possible?
Lets say the above is not okay, for whatever reason. What if my game restricts armor values from 1 to 500. (No armor can have a piece that has more than 500 armor or less than 1 armor).
Now my implementation becomes
void Armor::SetArmor(int tArmValue){
if (tArmValue>=1 && tArmValue<=500)
armorValue=tArmValue;
else
armorValue=1;
}
So, how else would I impose this restriction without using getters/setters? How else would I modify a property without using getters/setters? Should armorValue just be a public member variable in case 1, and the getters/setters used in case 2?
Curious. THanks guys
Upvotes: 9
Views: 8773
Reputation: 106086
A common criticism of get/set functions is that they can be abused by client code to perform operations that logically should be encapsulated in the class. For example, say a client wants to "polish" their armour, and decides the effect is to increase "value" by 20, so they do their little get and set thing and are happy. Then someone other client code elsewhere decides rusty armour should drop the value by 30, and they do their bit. Meanwhile, a dozen other places in client code are also allowing polishing and rusting effects on armour - as well as say "reinforcing" and "cracking", and implementing them directly. There's no central control of this... the maintainer of the armour class has no ability to do things like:
have the rust, polish, reinforce and crack effects apply at most once per piece of armour
tune the number added to or subtract from value for specific logical effects
decide that the new "leather" armour type can't rust, and ignore client attempts to make it do so
On the other hand, if the first client that wanted to make armour rusty couldn't do so through the interface, they'd go to the maintainer of the armour class and say "hey, give me a function to do this", then other people could start using the logical-level "rust" operation, and if it became useful later to do the kinds of things I describe above they could be implemented easily and centrally in the armour class (e.g. by having a separate boolean to say if the armour was rusty, or a separate variable recording the rust effect).
So, the thing with get/set functions is they frustrate the natural evolution of an API of logical functionality, instead distributing logic throughout client code, leading in extremis to an unmaintainable mess.
Upvotes: 4
Reputation: 490108
Being slightly contrarian: yes, getters and setters (aka accessors and mutators) are mostly evil.
The evil here is not, IMO, so much from "breaking encapsulation", as from simply defining a variable to be of one type (e.g., int
) when it's really not that type at all. Looking at your example, you're calling Armor an int
, but it's really not. While it's undoubtedly an integer, it's certainly not an int
, which (among other things) defines a range. While your type is an integer, it's never intended to support the same range as an int
at all. If you want Armor
to be of a type integer from 1 to 500
, define a type to represent that directly, and define Armor
as an instance of that type. In this case, since the invariant you want to enforce is defined as part of the type itself, you don't need to tack a setter onto it to try to enforce it.
template <class T, class less=std::less<T> >
class bounded {
const T lower_, upper_;
T val_;
bool check(T const &value) {
return less()(value, lower_) || less()(upper_, value);
}
void assign(T const &value) {
if (check(value))
throw std::domain_error("Out of Range");
val_ = value;
}
public:
bounded(T const &lower, T const &upper)
: lower_(lower), upper_(upper) {}
bounded(bounded const &init)
: lower_(init.lower), upper_(init.upper), val_(init.val_)
{ }
bounded &operator=(T const &v) { assign(v); return *this; }
operator T() const { return val_; }
friend std::istream &operator>>(std::istream &is, bounded &b) {
T temp;
is >> temp;
if (b.check(temp))
is.setstate(std::ios::failbit);
else
b.val_ = temp;
return is;
}
};
With this in place, defining some armor with a range of 1..500 becomes utterly trivial:
bounded<int> armor(1, 500);
Depending on the situation, you might prefer to define (for example) a saturating
type where attempting to assign an out of range value is fine, but the value that actually is assigned will simply be the nearest value that is within range.
saturating<int> armor(1, 500);
armor = 1000;
std::cout << armor; // prints "500"
Of course, what I've given above is also a bit bare-bones. For your armor type, it would probably be convenient to support -=
(and possibly +=
) so an attack would end up something like x.armor -= 10;
.
Bottom line: the (or at least "one") major problem with getters and setters is that they usually point to your having defined a variable as being of one type when you really want some other type that happened to be sort of similar in a few ways.
Now, it's true that some languages (e.g., Java) fail to provide the programmer with the tools necessary to write code like that. Here I'm trusting your use of the C++ tag to indicate that you really do want to write C++ though. C++ does provide you with the necessary tools, and (at least IMO) your code will be better off for your making good use of the tools it provides so your type enforces the required semantic constraints while still using clean, natural, readable syntax.
Upvotes: 12
Reputation: 62787
You have misunderstood something. Not using getters/setters breaks encapsulation and exposes implementation details, and can be considered "evil" for some definition of evil.
I guess they can be considered evil in the sense, that without proper IDE/editor support, they are somewhat tediois to write in C++...
One pitfall of C++ is to create non-const reference getter, which allows also modification. That's same as returning a pointer to internal data, and will lock that part of internal implementation, and is really no better than making field public.
Edit: based on comments and other answers, what you heard probably refers to always creating non-private getter and setter for every field. But I would not call that evil either, just stupid ;-)
Upvotes: 17
Reputation: 1207
Getters are evil whenever:
Good getters would thus do the following:
Setters on the other hand are evil always.
Upvotes: 1
Reputation: 62048
how else would I impose this restriction without using getters/setters? How else would I modify a property without using getters/setters?
You can check what you read from the variable and if its value is out of range use a predefined value instead (if possible).
You can also resort to dirty hacks such as protecting the memory underneath the variable from writing, catching write attempts and disallowing/ignoring the ones with invalid values. This is going to be cumbersome to implement and expensive to execute. It may be useful for debugging, though.
Upvotes: 0
Reputation: 99094
Giving access to members reduces encapsulation, but sometimes it's necessary. And the best way to do it is by means of getters and setters. Some people implement them when no such access is necessary, just because they can and it's a habit.
Upvotes: 1
Reputation: 64223
Your getter/setter looks ok.
The alternative to getter/setters is to make member variables public. To be more precise, group variables into structure without member functions. And operate on this structure within your class
Upvotes: 1
Reputation: 96258
In short: they aren't evil.
It's nothing wrong with them as long as they don't leak out the internal representation. I see no problems here.
Upvotes: 5