Reputation: 2104
I need to create a matrix with values from a numpy array. The values should be distributed over the matrix lines according to an array of indices.
Like this:
>>> values
array([ 0.73620381, 0.61843002, 0.33604769, 0.72344274, 0.48943796])
>>> inds
array([0, 1, 2, 3, 2])
>>> m = np.zeros((4, 5))
>>> for i, (index, value) in enumerate(zip(inds, values)):
m[index, i] = value
>>> m
array([[ 0.73620381, 0. , 0. , 0. , 0. ],
[ 0. , 0.61843002, 0. , 0. , 0. ],
[ 0. , 0. , 0.33604769, 0. , 0.48943796],
[ 0. , 0. , 0. , 0.72344274, 0. ]])
I'd like to know if there is a vectorized way to do it, i.e., without a loop. Any suggestions?
Upvotes: 3
Views: 13378
Reputation: 13505
Here's how you could do it with fancy indexing:
>>> values
array([ 0.73620381, 0.61843002, 0.33604769, 0.72344274, 0.48943796])
>>> inds
array([0, 1, 2, 3, 2])
>>> mshape = (4,5)
>>> m = np.zeros(mshape)
>>> m[inds,np.arange(mshape[1])] = values
>>> m
array([[ 0.73620381, 0. , 0. , 0. , 0. ],
[ 0. , 0.61843002, 0. , 0. , 0. ],
[ 0. , 0. , 0.33604769, 0. , 0.48943796],
[ 0. , 0. , 0. , 0.72344274, 0. ]])
Upvotes: 4
Reputation: 231665
Your values
and inds
arrays can be used as input to a scipy.sparse
constructor (similar to sparse in Matlab).
from scipy import sparse
values = np.array([ 0.73620381, 0.61843002, 0.33604769, 0.72344274, 0.48943796])
inds=np.array([0,1,2,3,2])
index = np.arange(5)
m=sparse.csc_matrix((values,(inds,index)),shape=(4,5))
m.todense() # produces a matrix or
m.toarray()
Upvotes: 2