kolergy
kolergy

Reputation: 2407

Access nested dictionary items via a list of keys?

I have a complex dictionary structure which I would like to access via a list of keys to address the correct item.

dataDict = {
    "a":{
        "r": 1,
        "s": 2,
        "t": 3
        },
    "b":{
        "u": 1,
        "v": {
            "x": 1,
            "y": 2,
            "z": 3
            },
        "w": 3
        }
    }    

maplist = ["a", "r"]

or

maplist = ["b", "v", "y"]

I have made the following code which works but I'm sure there is a better and more efficient way to do this if anyone has an idea.

# Get a given data from a dictionary with position provided as a list
def getFromDict(dataDict, mapList):    
    for k in mapList:
        dataDict = dataDict[k]
    return dataDict

# Set a given data in a dictionary with position provided as a list
def setInDict(dataDict, mapList, value): 
    for k in mapList[:-1]:
        dataDict = dataDict[k]
    dataDict[mapList[-1]] = value

Upvotes: 218

Views: 194195

Answers (22)

steamdragon
steamdragon

Reputation: 1170

You can use pydash:

import pydash as _
_.get(dataDict, ["b", "v", "y"], default='Default')

or

import pydash 
data = {'a': {'b': {'c': [0, 0, {'d': [0, {1: 2}]}]}}}
pydash.get(data, 'a.b.c.2.d.1.[1]')  # ref https://pydash.readthedocs.io/en/latest/deeppath.html#deep-path-strings

https://pydash.readthedocs.io/en/latest/api.html

Upvotes: 4

Bill
Bill

Reputation: 11603

Correct me if I'm wrong but none of the (many) answers here handle the case where you want to return a default value if the key is not found. Also, this function handles the case where you try to search deeper than the depth of the dictionary.

def deep_get(d, keys, default=None):
    if keys:
        if isinstance(d, dict):
            return deep_get(d.get(keys[0], default), keys[1:], default)
        else:
            return default
    else:
        return d

# Tests
d = {'A': 1, 'B': {'a': 5, 'b': 6}}
assert deep_get(d, ['A']) == 1
assert deep_get(d, ['B', 'b']) == 6
assert deep_get(d, ['C']) is None
assert deep_get(d, ['C'], -1) == -1
assert deep_get(d, ['A', 'b'], -1) == -1
assert deep_get(d, ['B', 'a', 'b'], -1) == -1
assert deep_get({}, ['A'], -1) == -1
assert deep_get(None, ['A'], -1) == -1

Upvotes: 1

Alexander Larin
Alexander Larin

Reputation: 27

Multipurpose and simple function to get a field value from a nested dictionary or list:

def key_chain(data, *args, default=None):
    for key in args:
        if isinstance(data, dict):
            data = data.get(key, default)
        elif isinstance(data, (list, tuple)) and isinstance(key, int):
            try:
                data = data[key]
            except IndexError:
                return default
        else:
            return default
    return data

It returns the default value if any key is missed and supports integer keys for lists and tuples. In your case you can call it like

key_chain(dataDict, *maplist)

or

key_chain(dataDict, "b", "v", "y")

More examples of usage https://gist.github.com/yaznahar/26bd3442467aff5d126d345cca0efcad

Upvotes: 1

DomTomCat
DomTomCat

Reputation: 8569

It seems more pythonic to use a for loop. See the quote from What’s New In Python 3.0.

Removed reduce(). Use functools.reduce() if you really need it; however, 99 percent of the time an explicit for loop is more readable.

def nested_get(dic, keys):    
    for key in keys:
        dic = dic[key]
    return dic

def nested_set(dic, keys, value):
    for key in keys[:-1]:
        dic = dic.setdefault(key, {})
    dic[keys[-1]] = value

def nested_del(dic, keys):
    for key in keys[:-1]:
        dic = dic[key]
    del dic[keys[-1]]

Note that the accepted solution doesn't set non-existing nested keys (it raises KeyError). Using the approach above will create non-existing nodes instead.

The code works in both Python 2 and 3.

Upvotes: 89

edd313
edd313

Reputation: 1459

Check out NestedDict from the ndicts package (I am the author), it does exactly what you ask for.

from ndicts import NestedDict

data_dict = {
    "a":{
        "r": 1,
        "s": 2,
        "t": 3
        },
    "b":{
        "u": 1,
        "v": {
            "x": 1,
            "y": 2,
            "z": 3
        },
        "w": 3
        }
}  

nd = NestedDict(data_dict)

You can now access keys using comma separated values.

>>> nd["a", "r"]
    1
>>> nd["b", "v"]
    {"x": 1, "y": 2, "z": 3}

Upvotes: 4

funnydman
funnydman

Reputation: 11336

I'd rather use simple recursion function:

def get_value_by_path(data, maplist):
    if not maplist:
        return data
    for key in maplist:
        if key in data:
            return get_value_by_path(data[key], maplist[1:])

Upvotes: 1

Okezie
Okezie

Reputation: 5108

Instead of taking a performance hit each time you want to look up a value, how about you flatten the dictionary once then simply look up the key like b:v:y

def flatten(mydict,sep = ':'):
  new_dict = {}
  for key,value in mydict.items():
    if isinstance(value,dict):
      _dict = {sep.join([key, _key]):_value for _key, _value in flatten(value).items()}
      new_dict.update(_dict)
    else:
      new_dict[key]=value
  return new_dict

dataDict = {
"a":{
    "r": 1,
    "s": 2,
    "t": 3
    },
"b":{
    "u": 1,
    "v": {
        "x": 1,
        "y": 2,
        "z": 3
    },
    "w": 3
    }
}    

flat_dict = flatten(dataDict)
print flat_dict
{'b:w': 3, 'b:u': 1, 'b:v:y': 2, 'b:v:x': 1, 'b:v:z': 3, 'a:r': 1, 'a:s': 2, 'a:t': 3}

This way you can simply look up items using flat_dict['b:v:y'] which will give you 1.

And instead of traversing the dictionary on each lookup, you may be able to speed this up by flattening the dictionary and saving the output so that a lookup from cold start would mean loading up the flattened dictionary and simply performing a key/value lookup with no traversal.

Upvotes: 3

Werner Venter
Werner Venter

Reputation: 57

I use this

def get_dictionary_value(dictionary_temp, variable_dictionary_keys):
     try:
          if(len(variable_dictionary_keys) == 0):
               return str(dictionary_temp)

          variable_dictionary_key = variable_dictionary_keys[0]
          variable_dictionary_keys.remove(variable_dictionary_key)

          return get_dictionary_value(dictionary_temp[variable_dictionary_key] , variable_dictionary_keys)

     except Exception as variable_exception:
          logging.error(variable_exception)
 
          return ''

Upvotes: -1

Martijn Pieters
Martijn Pieters

Reputation: 1121466

Use reduce() to traverse the dictionary:

from functools import reduce  # forward compatibility for Python 3
import operator

def getFromDict(dataDict, mapList):
    return reduce(operator.getitem, mapList, dataDict)

and reuse getFromDict to find the location to store the value for setInDict():

def setInDict(dataDict, mapList, value):
    getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value

All but the last element in mapList is needed to find the 'parent' dictionary to add the value to, then use the last element to set the value to the right key.

Demo:

>>> getFromDict(dataDict, ["a", "r"])
1
>>> getFromDict(dataDict, ["b", "v", "y"])
2
>>> setInDict(dataDict, ["b", "v", "w"], 4)
>>> import pprint
>>> pprint.pprint(dataDict)
{'a': {'r': 1, 's': 2, 't': 3},
 'b': {'u': 1, 'v': {'w': 4, 'x': 1, 'y': 2, 'z': 3}, 'w': 3}}

Note that the Python PEP8 style guide prescribes snake_case names for functions. The above works equally well for lists or a mix of dictionaries and lists, so the names should really be get_by_path() and set_by_path():

from functools import reduce  # forward compatibility for Python 3
import operator

def get_by_path(root, items):
    """Access a nested object in root by item sequence."""
    return reduce(operator.getitem, items, root)

def set_by_path(root, items, value):
    """Set a value in a nested object in root by item sequence."""
    get_by_path(root, items[:-1])[items[-1]] = value

And for completion's sake, a function to delete a key:

def del_by_path(root, items):
    """Delete a key-value in a nested object in root by item sequence."""
    del get_by_path(root, items[:-1])[items[-1]]

Upvotes: 339

Abhirup Das
Abhirup Das

Reputation: 743

You can make use of the eval function in python.

def nested_parse(nest, map_list):
    nestq = "nest['" + "']['".join(map_list) + "']"
    return eval(nestq, {'__builtins__':None}, {'nest':nest})

Explanation

For your example query: maplist = ["b", "v", "y"]

nestq will be "nest['b']['v']['y']" where nest is the nested dictionary.

The eval builtin function executes the given string. However, it is important to be careful about possible vulnerabilities that arise from use of eval function. Discussion can be found here:

  1. https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
  2. https://www.journaldev.com/22504/python-eval-function

In the nested_parse() function, I have made sure that no __builtins__ globals are available and only local variable that is available is the nest dictionary.

Upvotes: -4

alancalvitti
alancalvitti

Reputation: 476

Extending @DomTomCat and others' approach, these functional (ie, return modified data via deepcopy without affecting the input) setter and mapper works for nested dict and list.

setter:

def set_at_path(data0, keys, value):
    data = deepcopy(data0)
    if len(keys)>1:
        if isinstance(data,dict):
            return {k:(set_by_path(v,keys[1:],value) if k==keys[0] else v) for k,v in data.items()}
        if isinstance(data,list):
            return [set_by_path(x[1],keys[1:],value) if x[0]==keys[0] else x[1] for x in enumerate(data)]
    else:
        data[keys[-1]]=value
        return data

mapper:

def map_at_path(data0, keys, f):
    data = deepcopy(data0)
    if len(keys)>1:
        if isinstance(data,dict):
            return {k:(map_at_path(v,keys[1:],f) if k==keys[0] else v) for k,v in data.items()}
        if isinstance(data,list):
            return [map_at_path(x[1],keys[1:],f) if x[0]==keys[0] else x[1] for x in enumerate(data)]
    else:
        data[keys[-1]]=f(data[keys[-1]])
        return data

Upvotes: -1

nehem
nehem

Reputation: 13642

It's satisfying to see these answers for having two static methods for setting & getting nested attributes. These solutions are way better than using nested trees https://gist.github.com/hrldcpr/2012250

Here's my implementation.

Usage:

To set nested attribute call sattr(my_dict, 1, 2, 3, 5) is equal to my_dict[1][2][3][4]=5

To get a nested attribute call gattr(my_dict, 1, 2)

def gattr(d, *attrs):
    """
    This method receives a dict and list of attributes to return the innermost value of the give dict       
    """
    try:
        for at in attrs:
            d = d[at]
        return d
    except(KeyError, TypeError):
        return None


def sattr(d, *attrs):
    """
    Adds "val" to dict in the hierarchy mentioned via *attrs
    For ex:
    sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
    This method creates necessary objects until it reaches the final depth
    This behaviour is also known as autovivification and plenty of implementation are around
    This implementation addresses the corner case of replacing existing primitives
    https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
    """
    for attr in attrs[:-2]:
        if type(d.get(attr)) is not dict:
            d[attr] = {}
        d = d[attr]
    d[attrs[-2]] = attrs[-1]

Upvotes: 2

lucas
lucas

Reputation: 1

a method for concatenating strings:

def get_sub_object_from_path(dict_name, map_list):
    for i in map_list:
        _string = "['%s']" % i
        dict_name += _string
    value = eval(dict_name)
    return value
#Sample:
_dict = {'new': 'person', 'time': {'for': 'one'}}
map_list = ['time', 'for']
print get_sub_object_from_path("_dict",map_list)
#Output:
#one

Upvotes: -1

Jack Casey
Jack Casey

Reputation: 1836

Very late to the party, but posting in case this may help someone in the future. For my use case, the following function worked the best. Works to pull any data type out of dictionary

dict is the dictionary containing our value

list is a list of "steps" towards our value

def getnestedvalue(dict, list):

    length = len(list)
    try:
        for depth, key in enumerate(list):
            if depth == length - 1:
                output = dict[key]
                return output
            dict = dict[key]
    except (KeyError, TypeError):
        return None

    return None

Upvotes: 1

And0k
And0k

Reputation: 74

How about check and then set dict element without processing all indexes twice?

Solution:

def nested_yield(nested, keys_list):
    """
    Get current nested data by send(None) method. Allows change it to Value by calling send(Value) next time
    :param nested: list or dict of lists or dicts
    :param keys_list: list of indexes/keys
    """
    if not len(keys_list):  # assign to 1st level list
        if isinstance(nested, list):
            while True:
                nested[:] = yield nested
        else:
            raise IndexError('Only lists can take element without key')


    last_key = keys_list.pop()
    for key in keys_list:
        nested = nested[key]

    while True:
        try:
            nested[last_key] = yield nested[last_key]
        except IndexError as e:
            print('no index {} in {}'.format(last_key, nested))
            yield None

Example workflow:

ny = nested_yield(nested_dict, nested_address)
data_element = ny.send(None)
if data_element:
    # process element
    ...
else:
    # extend/update nested data
    ny.send(new_data_element)
    ...
ny.close()

Test

>>> cfg= {'Options': [[1,[0]],[2,[4,[8,16]]],[3,[9]]]}
    ny = nested_yield(cfg, ['Options',1,1,1])
    ny.send(None)
[8, 16]
>>> ny.send('Hello!')
'Hello!'
>>> cfg
{'Options': [[1, [0]], [2, [4, 'Hello!']], [3, [9]]]}
>>> ny.close()

Upvotes: 0

Pulkit
Pulkit

Reputation: 349

An alternative way if you don't want to raise errors if one of the keys is absent (so that your main code can run without interruption):

def get_value(self,your_dict,*keys):
    curr_dict_ = your_dict
    for k in keys:
        v = curr_dict.get(k,None)
        if v is None:
            break
        if isinstance(v,dict):
            curr_dict = v
    return v

In this case, if any of the input keys is not present, None is returned, which can be used as a check in your main code to perform an alternative task.

Upvotes: 1

Grant Palmer
Grant Palmer

Reputation: 208

If you also want the ability to work with arbitrary json including nested lists and dicts, and nicely handle invalid lookup paths, here's my solution:

from functools import reduce


def get_furthest(s, path):
    '''
    Gets the furthest value along a given key path in a subscriptable structure.

    subscriptable, list -> any
    :param s: the subscriptable structure to examine
    :param path: the lookup path to follow
    :return: a tuple of the value at the furthest valid key, and whether the full path is valid
    '''

    def step_key(acc, key):
        s = acc[0]
        if isinstance(s, str):
            return (s, False)
        try:
            return (s[key], acc[1])
        except LookupError:
            return (s, False)

    return reduce(step_key, path, (s, True))


def get_val(s, path):
    val, successful = get_furthest(s, path)
    if successful:
        return val
    else:
        raise LookupError('Invalid lookup path: {}'.format(path))


def set_val(s, path, value):
    get_val(s, path[:-1])[path[-1]] = value

Upvotes: 0

Poh Zi How
Poh Zi How

Reputation: 1569

Solved this with recursion:

def get(d,l):
    if len(l)==1: return d[l[0]]
    return get(d[l[0]],l[1:])

Using your example:

dataDict = {
    "a":{
        "r": 1,
        "s": 2,
        "t": 3
        },
    "b":{
        "u": 1,
        "v": {
            "x": 1,
            "y": 2,
            "z": 3
        },
        "w": 3
        }
}
maplist1 = ["a", "r"]
maplist2 = ["b", "v", "y"]
print(get(dataDict, maplist1)) # 1
print(get(dataDict, maplist2)) # 2

Upvotes: 4

Arount
Arount

Reputation: 10403

Pure Python style, without any import:

def nested_set(element, value, *keys):
    if type(element) is not dict:
        raise AttributeError('nested_set() expects dict as first argument.')
    if len(keys) < 2:
        raise AttributeError('nested_set() expects at least three arguments, not enough given.')

    _keys = keys[:-1]
    _element = element
    for key in _keys:
        _element = _element[key]
    _element[keys[-1]] = value

example = {"foo": { "bar": { "baz": "ok" } } }
keys = ['foo', 'bar']
nested_set(example, "yay", *keys)
print(example)

Output

{'foo': {'bar': 'yay'}}

Upvotes: 1

xyres
xyres

Reputation: 21734

How about using recursive functions?

To get a value:

def getFromDict(dataDict, maplist):
    first, rest = maplist[0], maplist[1:]

    if rest: 
        # if `rest` is not empty, run the function recursively
        return getFromDict(dataDict[first], rest)
    else:
        return dataDict[first]

And to set a value:

def setInDict(dataDict, maplist, value):
    first, rest = maplist[0], maplist[1:]

    if rest:
        try:
            if not isinstance(dataDict[first], dict):
                # if the key is not a dict, then make it a dict
                dataDict[first] = {}
        except KeyError:
            # if key doesn't exist, create one
            dataDict[first] = {}

        setInDict(dataDict[first], rest, value)
    else:
        dataDict[first] = value

Upvotes: 6

eafit
eafit

Reputation: 468

Using reduce is clever, but the OP's set method may have issues if the parent keys do not pre-exist in the nested dictionary. Since this is the first SO post I saw for this subject in my google search, I would like to make it slightly better.

The set method in ( Setting a value in a nested python dictionary given a list of indices and value ) seems more robust to missing parental keys. To copy it over:

def nested_set(dic, keys, value):
    for key in keys[:-1]:
        dic = dic.setdefault(key, {})
    dic[keys[-1]] = value

Also, it can be convenient to have a method that traverses the key tree and get all the absolute key paths, for which I have created:

def keysInDict(dataDict, parent=[]):
    if not isinstance(dataDict, dict):
        return [tuple(parent)]
    else:
        return reduce(list.__add__, 
            [keysInDict(v,parent+[k]) for k,v in dataDict.items()], [])

One use of it is to convert the nested tree to a pandas DataFrame, using the following code (assuming that all leafs in the nested dictionary have the same depth).

def dict_to_df(dataDict):
    ret = []
    for k in keysInDict(dataDict):
        v = np.array( getFromDict(dataDict, k), )
        v = pd.DataFrame(v)
        v.columns = pd.MultiIndex.from_product(list(k) + [v.columns])
        ret.append(v)
    return reduce(pd.DataFrame.join, ret)

Upvotes: 16

dmmfll
dmmfll

Reputation: 2836

This library may be helpful: https://github.com/akesterson/dpath-python

A python library for accessing and searching dictionaries via /slashed/paths ala xpath

Basically it lets you glob over a dictionary as if it were a filesystem.

Upvotes: 13

Related Questions