Reputation: 11607
I have a DataFrame with a MultiIndex created after some grouping:
import numpy as np
import pandas as pd
from numpy.random import randn
df = pd.DataFrame({'A' : ['a1', 'a1', 'a2', 'a3'],
'B' : ['b1', 'b2', 'b3', 'b4'],
'Vals' : randn(4)}
).groupby(['A', 'B']).sum()
# Vals
# A B
# a1 b1 -1.632460
# b2 0.596027
# a2 b3 -0.619130
# a3 b4 -0.002009
How do I prepend a level to the MultiIndex so that I turn it into something like:
# Vals
# FirstLevel A B
# Foo a1 b1 -1.632460
# b2 0.596027
# a2 b3 -0.619130
# a3 b4 -0.002009
Upvotes: 200
Views: 156491
Reputation: 64453
You can first add it as a normal column and then append it to the current index, so:
df['Firstlevel'] = 'Foo'
df.set_index('Firstlevel', append=True, inplace=True)
And change the order if needed with:
df.reorder_levels(['Firstlevel', 'A', 'B'])
Which results in:
Vals
Firstlevel A B
Foo a1 b1 0.871563
b2 0.494001
a2 b3 -0.167811
a3 b4 -1.353409
EDIT
Even shorter solution (saves the reordering of levels):
df['Firstlevel'] = 'Foo'
df.set_index(['Firstlevel', df.index], inplace=True)
Or alternatively (use axis=1
for columns):
df = pd.concat([df], keys=["Firstlevel"], axis=0)
Upvotes: 182
Reputation: 9762
Another answer using from_tuples()
. This generalizes this previous answer.
key = "Foo"
name = "First"
# If df.index.nlevels > 1:
df.index = pd.MultiIndex.from_tuples(((key, *item) for item in df.index),
names=[name]+df.index.names)
# If df.index.nlevels == 1:
# df.index = pd.MultiIndex.from_tuples(((key, item) for item in df.index),
# names=[name]+df.index.names)
I like this approach because
Wrapping the above in a function makes it easier to switch between row and column indexes, and between single-level and multi-level indexes:
def prepend_index_level(index, key, name=None):
names = index.names
if index.nlevels==1:
# Sequence of tuples
index = ((item,) for item in index)
tuples_gen = ((key,)+item for item in index)
return pd.MultiIndex.from_tuples(tuples_gen, names=[name]+names)
df.index = prepend_index_level(df.index, key="Foo", name="First")
df.columns = prepend_index_level(df.columns, key="Bar", name="Top")
# Top Bar
# Vals
# First A B
# Foo a1 b1 -0.446066
# b2 -0.248027
# a2 b3 0.522357
# a3 b4 0.404048
Finally, the above can be further generalized by inserting the key at any index level:
def insert_index_level(index, key, name=None, level=0):
def insert_(pos, seq, value):
seq = list(seq)
seq.insert(pos, value)
return tuple(seq)
names = insert_(level, index.names, name)
if index.nlevels==1:
# Sequence of tuples.
index = ((item,) for item in index)
tuples_gen = (insert_(level, item, key) for item in index)
return pd.MultiIndex.from_tuples(tuples_gen, names=names)
df.index = insert_index_level(df.index, key="Foo", name="Last", level=2)
df.columns = insert_index_level(df.columns, key="Bar", name="Top", level=0)
# Top Bar
# Vals
# A B Last
# a1 b1 Foo -0.595949
# b2 Foo -1.621233
# a2 b3 Foo -0.748917
# a3 b4 Foo 2.147814
Upvotes: 6
Reputation: 5183
How about building it from scratch with pandas.MultiIndex.from_tuples?
df.index = p.MultiIndex.from_tuples(
[(nl, A, B) for nl, (A, B) in
zip(['Foo'] * len(df), df.index)],
names=['FirstLevel', 'A', 'B'])
Similarly to cxrodger's solution, this is a flexible method and avoids modifying the underlying array for the dataframe.
Upvotes: 4
Reputation: 2996
A nice way to do this in one line using pandas.concat()
:
import pandas as pd
pd.concat([df], keys=['Foo'], names=['Firstlevel'])
An even shorter way:
pd.concat({'Foo': df}, names=['Firstlevel'])
This can be generalized to many data frames, see the docs.
Upvotes: 267
Reputation: 2371
I made a little function out of cxrodgers answer, which IMHO is the best solution since it works purely on an index, independent of any data frame or series.
There is one fix I added: the to_frame()
method will invent new names for index levels that don't have one. As such the new index will have names that don't exist in the old index. I added some code to revert this name-change.
Below is the code, I've used it myself for a while and it seems to work fine. If you find any issues or edge cases, I'd be much obliged to adjust my answer.
import pandas as pd
def _handle_insert_loc(loc: int, n: int) -> int:
"""
Computes the insert index from the right if loc is negative for a given size of n.
"""
return n + loc + 1 if loc < 0 else loc
def add_index_level(old_index: pd.Index, value: Any, name: str = None, loc: int = 0) -> pd.MultiIndex:
"""
Expand a (multi)index by adding a level to it.
:param old_index: The index to expand
:param name: The name of the new index level
:param value: Scalar or list-like, the values of the new index level
:param loc: Where to insert the level in the index, 0 is at the front, negative values count back from the rear end
:return: A new multi-index with the new level added
"""
loc = _handle_insert_loc(loc, len(old_index.names))
old_index_df = old_index.to_frame()
old_index_df.insert(loc, name, value)
new_index_names = list(old_index.names) # sometimes new index level names are invented when converting to a df,
new_index_names.insert(loc, name) # here the original names are reconstructed
new_index = pd.MultiIndex.from_frame(old_index_df, names=new_index_names)
return new_index
It passed the following unittest code:
import unittest
import numpy as np
import pandas as pd
class TestPandaStuff(unittest.TestCase):
def test_add_index_level(self):
df = pd.DataFrame(data=np.random.normal(size=(6, 3)))
i1 = add_index_level(df.index, "foo")
# it does not invent new index names where there are missing
self.assertEqual([None, None], i1.names)
# the new level values are added
self.assertTrue(np.all(i1.get_level_values(0) == "foo"))
self.assertTrue(np.all(i1.get_level_values(1) == df.index))
# it does not invent new index names where there are missing
i2 = add_index_level(i1, ["x", "y"]*3, name="xy", loc=2)
i3 = add_index_level(i2, ["a", "b", "c"]*2, name="abc", loc=-1)
self.assertEqual([None, None, "xy", "abc"], i3.names)
# the new level values are added
self.assertTrue(np.all(i3.get_level_values(0) == "foo"))
self.assertTrue(np.all(i3.get_level_values(1) == df.index))
self.assertTrue(np.all(i3.get_level_values(2) == ["x", "y"]*3))
self.assertTrue(np.all(i3.get_level_values(3) == ["a", "b", "c"]*2))
# df.index = i3
# print()
# print(df)
Upvotes: 6
Reputation: 4697
I think this is a more general solution:
# Convert index to dataframe
old_idx = df.index.to_frame()
# Insert new level at specified location
old_idx.insert(0, 'new_level_name', new_level_values)
# Convert back to MultiIndex
df.index = pandas.MultiIndex.from_frame(old_idx)
Some advantages over the other answers:
Upvotes: 64