Reputation: 1208
Update: I am trying to map some data. I have a set of measured back-azimuths (baz) from a reference point in a grid. I want to find all points on the grid that a great circle along the baz would cross. To do this I iterate through each point in the grid, calculate expected back-azimuth between that point and the reference point and compare to each measured baz. If the difference between the two is small (less than 2 degrees) I weight that point. I then put it all on a map. The code I use is below but the results look a bit strange, does anyone know where I have gone wrong, or if there is a better approach (faster) then what I have done??
from matplotlib.colorbar import ColorbarBase
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.basemap import Basemap
import mpl_toolkits.basemap.pyproj as pyproj
llcrnrlon = -30.0
llcrnrlat = 45.0
urcrnrlon = 0.0
urcrnrlat = 65.0
lon_0 = (urcrnrlon + llcrnrlon) / 2.
lat_0 = (urcrnrlat + llcrnrlat) / 2.
lat = 51.58661577 # reference point
lon = -9.18822525
# Generate random back-azimuths.
baz = zeros((20))
for i in xrange(len(baz)):
baz[i] = random.randint(200,230)
####################################################################
## Set up the map background.
m = Basemap(llcrnrlon=llcrnrlon,llcrnrlat=llcrnrlat,urcrnrlon=urcrnrlon,urcrnrlat=urcrnrlat,
resolution='i',projection='lcc',lon_0=lon_0,lat_0=lat_0)
m.drawcoastlines()
m.fillcontinents()
# draw parallels
m.drawparallels(np.arange(10,70,10),labels=[1,0,0,0])
# draw meridians
m.drawmeridians(np.arange(-80, 25, 10),labels=[0,0,0,1])
# Plot station locations.
x, y = m(lon, lat) # array ref points
m.plot(x,y,'ro', ms=5)
####################################################################
## Set up the grids etc.
glons = np.linspace(llcrnrlon, urcrnrlon, 100)
glats = np.linspace(llcrnrlat, urcrnrlat, 100)
# Convert to map coords.
xlons, ylats = m(glons, glats)
# create grid for pcolormesh.
grid_lon, grid_lat = np.meshgrid(xlons, ylats)
# create weights for pcolormesh.
weights = np.zeros(np.shape(grid_lon))
# create grid of lat-lon coords for baz calculation.
gln, glt = np.meshgrid(glons, glats)
####################################################################
## calculate baz from grid_lon, grid_lat to lon, lat. If less
## than error weight grid point.
# method for BAZ calculation via pyproj.
def get_baz(lon1, lat1, lon2, lat2):
g = pyproj.Geod(ellps='WGS84')
az, baz, dist = g.inv(lon1, lat1, lon2, lat2)
return baz
# BAZ calcultion for each point in grid.
ll=0
for mBAZ in baz:
for i in xrange(len(gln)):
for k in xrange(len(gln[i])):
nbaz = get_baz(lon, lat, gln[i][k], glt[i][k])
nbaz += 180
if abs(nbaz - mBAZ) < 2:
weights[i][k] = 1
ll+=1
# plot grid.
m.pcolormesh(grid_lon, grid_lat, weights, cmap=plt.cm.YlOrBr)
plt.colorbar()
plt.show()
I am trying to map some data. I have a dataset that gives a range of values (frequencies) for each direction. I want to plot them on a grid so each grid point along a particular azimuth is weighted by the power for a particular frequency. I have created a map with basemap and plotted a grid over it as follows,
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
from shoot import *
llcrnrlon = -20.0
llcrnrlat = 45.0
urcrnrlon = 10.0
urcrnrlat = 65.0
lon_0 = (urcrnrlon + llcrnrlon) / 2.
lat_0 = (urcrnrlat + llcrnrlat) / 2.
m = Basemap(llcrnrlon=llcrnrlon,llcrnrlat=llcrnrlat,urcrnrlon=urcrnrlon,urcrnrlat=urcrnrlat,
resolution='i',projection='lcc',lon_0=lon_0,lat_0=lat_0)
## Set up the grid.
glons = np.linspace(-20,10,50)
glats = np.linspace(45, 65, 50)
xlons, ylats = m(glons, glats)
grid_lon, grid_lat = np.meshgrid(xlons, ylats)
pwr = np.zeros((50,50))
m.drawcoastlines()
m.fillcontinents()
# draw parallels
m.drawparallels(np.arange(10,70,10),labels=[1,0,0,0])
# draw meridians
m.drawmeridians(np.arange(-80, 25, 10),labels=[0,0,0,1])
lats = [54.8639587, 51.5641564]
lons = [-8.1778180, -9.2754284]
x, y = m(lons, lats) # array ref points
# Plot station locations.
m.plot(x,y,'ro', ms=5)
m.pcolormesh(grid_lon, grid_lat, pwr)
then I shoot out the great circle I want using some functions I found at this nice site
glon1 = lons[0]
glat1 = lats[0]
azimuth = 280.
maxdist = 200.
great(m, glon1, glat1, azimuth, color='orange', lw=2.0)
plt.show()
However, plotting the line is not enough, I want to be able to find the grid points that the great circle crosses so I can assign a value to them. Does anyone know how to go about this??
Upvotes: 0
Views: 1937
Reputation: 113
Can you specify which crossing point do you mean? Running your code returns only one line ...
Upvotes: 0